• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

アンサンブル法の統計的予測問題への適用

Research Project

Project/Area Number 17700286
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeSingle-year Grants
Research Field Statistical science
Research InstitutionThe Institute of Statistical Mathematics

Principal Investigator

伏木 忠義  The Institute of Statistical Mathematics, 数理・推論研究系, 助教 (50370094)

Project Period (FY) 2005 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥1,800,000 (Direct Cost: ¥1,800,000)
Fiscal Year 2007: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 2006: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 2005: ¥600,000 (Direct Cost: ¥600,000)
Keywordsアンサンブル学習 / 統計的予測 / ブートストラップ / ベイス / 予測分布 / ベイズ / モデル選択
Research Abstract

これまでと同様に,Kullback-Leiblerダイバージェンスを損失関数とした統計的予測問題を考えた.昨年,サンプル数がモデルの大きさに比べて大きいとはいえない状況で,ブートストラップ予測を構成するときに問題が生じることを示し,その問題を解決する方法を考えた.具体的には,Rubinが提案したベイジアン・ブートストラップを用いて予測分布を構成する手法を提案した.昨年度は,ベイジアン・ブートストラップを用いた予測分布について,漸近理論を用いて理論解析を行うとともに,簡単なモデルを使って理論の確認を行ったが,本年度は実データを用いて現実的な状況でその有効性を調べた.Boston郊外の家の値段を,その地域の犯罪率,ある広さ当たりの住居地の占める割り合い,街に占める小売店以外の会社の広さの割り合いといった量をもとにして予測するBoston Housing Dataなどのデータを用いて,ベイジアン・ブートストラップ予測,ブートストラップ予測,プラグイン予測の予測性能の比較を行った.複雑な現象を扱う場合には,大きなモデルを使う必要があるが,サンプル数とパラメータ数が近い状況となる.そのような状況ではブートストラップ予測では問題が生じることがあり,ベイジアン・ブートストラップ予測の安定性が確認された.漸近理論を用いたブートストラップ予測のプラグイン予測に対する予測の改良分は2次のオーダーであり,データ数が大きな場合は小さな量となると考えらけるが,このような状況では予測の改良分は大きく,本手法の有効性が確認された.また,本年度は,これらの結果をまとめ,論文として投稿した.

Report

(3 results)
  • 2007 Annual Research Report
  • 2006 Annual Research Report
  • 2005 Annual Research Report
  • Research Products

    (2 results)

All 2006 2005

All Journal Article (2 results)

  • [Journal Article] A maximum likelihood approach to density estimation with semidefinite programming.2006

    • Author(s)
      Tadayoshi Fushiki, Shingo Horiuchi, Takashi Tsuchiya
    • Journal Title

      Neural Computation 18・11

      Pages: 2777-2812

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Bootstrap prediction and Bayesian prediction under misspecified models2005

    • Author(s)
      Tadayoshi Fushiki
    • Journal Title

      Bernoulli 11・4

      Pages: 747-758

    • Related Report
      2005 Annual Research Report

URL: 

Published: 2005-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi