Project/Area Number |
17740012
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Single-year Grants |
Research Field |
Algebra
|
Research Institution | Tokyo Metropolitan University (2006-2007) Kyoto University (2005) |
Principal Investigator |
上原 北斗 Tokyo Metropolitan University, 大学院・理工研究科, 准教授 (80378546)
|
Project Period (FY) |
2005 – 2007
|
Project Status |
Completed (Fiscal Year 2007)
|
Budget Amount *help |
¥2,100,000 (Direct Cost: ¥2,100,000)
Fiscal Year 2007: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2006: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2005: ¥700,000 (Direct Cost: ¥700,000)
|
Keywords | 導来圏 / グラスマン多様体の余接束 / 安定性条件 |
Research Abstract |
私は戸田幸伸氏との共同研究で,グラスマン多様体の余接層の導来圏の良い生成元(tiltinggenerator)を具体的に記述しようと取り組んでいてG(2,4)の場合に結果を得た。Kaledinの結果からこのような生成元の存在は知られているが,この具体的な記述は知られていないようである。また同様の方法で相対次元が1の場合のVan den Berghの結果(tilting generatorの存在)を相対次元が2の場合に一般化することに成功した。 代数多様体上にTilting generatorが存在すればある種の非可換環の導来圏とその代数多様体の導来圏の同値が導かれ,これはMcKay対応の一般化と見なされ非常に興味深い。またVan den Berghは代数多様体に対し,いわゆるクレパント特異点解消の非可換化である"非可換クレパント特異点解消"という概念を導入したが,我々の結果からある種の多様体に関しては,そのような非可換特異点解消が存在することも示した。 さらに藤野修氏,佐藤拓氏,高野有紀篇氏との共同研究で,端末的特異点を持つ3次元トーリック多様体の端射的収縮写像具体的記述を与えた。特にそこではこのような3次元トーリック多様体は必はすQ分解的であり,またGorensteinでない特異点を持つことを示した。
|
Report
(3 results)
Research Products
(4 results)