• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

高次元極小モデル理論

Research Project

Project/Area Number 17740015
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeSingle-year Grants
Research Field Algebra
Research InstitutionKyoto University

Principal Investigator

川北 真之  Kyoto University, 数理解析研究所, 准教授 (10378961)

Project Period (FY) 2005 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥3,400,000 (Direct Cost: ¥3,400,000)
Fiscal Year 2007: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2006: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2005: ¥1,200,000 (Direct Cost: ¥1,200,000)
Keywords極小モデル理論 / 極小対数的食違い係数 / フリップの終止 / 極小対数的食い違い係数 / 逆同伴 / モチーフ積分 / 対数的標準特異点
Research Abstract

極小対数的食違い係数の研究を行った.
極小モデル理論とは標準因子の比較によって各双有理同値類から代表的な多様体を抽出する理論であり,現在,極小モデルプログラム(MMP)の形で定式化されている.高次元MMPの完成にはフリップの存在と終止を示さなければならないが,最近Birkar, Cascini, Hacon, McKernanによりフリップの存在が証明され,極小モデル理論は俄かに確実な前進を遂げた.目下,フリップの終止予想が最重要な課題であるが,Shokurovによるとそれは極小対数的食違い係数に関する二つの局所的問題に還元される.しかしながら実情は,どちらの予想の系でもある,次元を固定したときの係数の上からの有界性すら全く未解決である.
私は過去2年度この視点から極小対数的食違い係数の逆同伴を研究した.今年度はその延長から,係数の有界性問題をRiemann-Rochの定理の観点から以下の原理に基づき考察した.消滅定理が適用される範囲でEuler標数は大域切断の次元となるが,Riemann-Rochの定理からそれは変化する.よって標準因子は係数がある程度小さい因子で実現されるが,それは極小対数的食違い係数の有界性を意味する.私は係数の有界性を,特異点の程度が良い場合の重複度或いは埋込次元の有界性に帰着させた.また3次元ではこの手法で係数の有界性が得られることがほぼ分かった.

Report

(3 results)
  • 2007 Annual Research Report
  • 2006 Annual Research Report
  • 2005 Annual Research Report
  • Research Products

    (11 results)

All 2008 2007 2005 Other

All Journal Article (5 results) (of which Peer Reviewed: 1 results) Presentation (5 results) Remarks (1 results)

  • [Journal Article] On a comparison of minimal log discrepancies in terms of motivic integration2008

    • Author(s)
      Masayuki Kawakita
    • Journal Title

      Journal fur die Reine and Angewandte Mathematik

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On a comparison of minimal log discrepancies in terms of motivic integration2007

    • Author(s)
      Masayuki Kawakita
    • Journal Title

      数理解析研究所講究録 1550

      Pages: 113-120

    • Related Report
      2007 Annual Research Report
  • [Journal Article] Inversion of adjunction on log canonicity2007

    • Author(s)
      Masayuki Kawakita
    • Journal Title

      Inventiones Mathematicae 167

      Pages: 129-133

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Three-fold divisorial contractions to singularities of higher indices2005

    • Author(s)
      Masayuki Kawakita
    • Journal Title

      Duke Mathematical Journal 130

      Pages: 57-126

    • Related Report
      2005 Annual Research Report
  • [Journal Article] On a comparison of minimal log discrepancies in terms of motivic integration

    • Author(s)
      Masayuki Kawakita
    • Journal Title

      数理解析研究所講究録 (出版予定)

    • Related Report
      2006 Annual Research Report
  • [Presentation] Contractions2008

    • Author(s)
      Masayuki Kawakita
    • Organizer
      KIAS winter school on algebraic geometry ″Basics of minimal model program″
    • Place of Presentation
      Phoenix Park, S Kore
    • Year and Date
      2008-02-21
    • Related Report
      2007 Annual Research Report
  • [Presentation] Progress in the theory of minimal models2008

    • Author(s)
      Masayuki Kawakita
    • Organizer
      Kyoto U., Seoul National U., Chinese U. of Hong Kong workshop for young mathematicians
    • Place of Presentation
      Kyoto University, Japan
    • Year and Date
      2008-02-13
    • Related Report
      2007 Annual Research Report
  • [Presentation] On minimal log discrepancies2007

    • Author(s)
      Masayuki Kawakita
    • Organizer
      WAG 07-08 workshop ″Higher dimensional minimal model program″
    • Place of Presentation
      University of Warwick, UK
    • Year and Date
      2007-12-13
    • Related Report
      2007 Annual Research Report
  • [Presentation] On minimal log discrepancies2007

    • Author(s)
      Masayuki Kawakita
    • Organizer
      ″Hot topics: minimal and canonical models in algebraic geometry″
    • Place of Presentation
      Mathematical Sciences Research Institute, USA
    • Year and Date
      2007-04-19
    • Related Report
      2007 Annual Research Report
  • [Presentation] Suevey on inversion of adjunction2007

    • Author(s)
      Masayuki Kawakita
    • Organizer
      ″2007 NCTS mini-course in algebraic geometry″
    • Place of Presentation
      National Tsing Hua University, Taiwan
    • Related Report
      2007 Annual Research Report
  • [Remarks]

    • URL

      http://www.kurims.kyoto-u.ac.jp/~masayuki

    • Related Report
      2007 Annual Research Report

URL: 

Published: 2005-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi