• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

中興束の幾何学とその無限小としての超多様体上のホモロジーベクトル場

Research Project

Project/Area Number 17740033
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeSingle-year Grants
Research Field Geometry
Research InstitutionTokyo Institute of Technology

Principal Investigator

寺嶋 郁二  Tokyo Institute of Technology, 大学院・理工学研究科, 助教 (70361764)

Project Period (FY) 2005 – 2008
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥2,000,000 (Direct Cost: ¥2,000,000)
Fiscal Year 2007: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 2006: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 2005: ¥800,000 (Direct Cost: ¥800,000)
Keywordsホモロジーベクトル場 / 超多様体 / 主圏束 / ホロノミー
Research Abstract

ホモロジーベクトル場を用いて,準ポアソン構造と捩れポアソン構造を含むより統一的な構造を幾何的に捕らえることができたので,その変形理論を展開している.特に,モジュライ空間上に自然な平坦束を得ることができた.現在,その平坦束のホロノミーの幾何的な意味を明確にすることは興味深い問題であると考えている.さらに,梶浦宏成氏との共同研究で得られたホモロジーベクトル場の変形理論の一般論と組み合わせることで,より深い情報が得られることが分かりつつある.
具体的な例として,リー群の自分自身への共役作用からくる準ポアソン構造の場合に何が起こるのかをはっきり捕らえたい.五味清紀氏との共同研究によって, C.Vafaが発見した軌道体モデルにあらわれる離散トーション位相が高次のホロノミーとして幾何的に自然に解釈されることを示すことができたので,M. Douglasらによって指摘されている離散トーション位相と非可換幾何学との関係を具体的な例について,調べている.重要な点として,離散トーション位相はもともと有限群の作用についての理論であったが,私たちの仕事によってリー群の作用を含む一般の場合についても同様の理論が展開できることになったことがある.したがって,私たちの仕事を利用して, M.Douglasらの仕事の適切な一般化を見出すことは,非可換幾何学の一つのアプローチとして興味深いと考えている.

Report

(3 results)
  • 2007 Annual Research Report
  • 2006 Annual Research Report
  • 2005 Annual Research Report
  • Research Products

    (3 results)

All 2008 2007 2006

All Journal Article (3 results) (of which Peer Reviewed: 2 results)

  • [Journal Article] Geometry of polysymbols2008

    • Author(s)
      M. Morishita, Y. Terashima
    • Journal Title

      Math. Res. Lett. 15

      Pages: 95-115

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Arithmetic topology after Hida theory2007

    • Author(s)
      M. Morishita, Y. Terashima
    • Journal Title

      Series on Knots and Everthing 40

      Pages: 213-223

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Geometry of polysymbols2006

    • Author(s)
      M.Morishita, Y.Terashima
    • Journal Title

      Surikaisekikenkyusho Kokyuroku 1521

      Pages: 154-160

    • Related Report
      2006 Annual Research Report

URL: 

Published: 2005-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi