• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

二枚の穴あきトーラスを境界に持つ双曲多様体の組み合わせ構造の解析

Research Project

Project/Area Number 17740038
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeSingle-year Grants
Research Field Geometry
Research InstitutionOsaka City University

Principal Investigator

秋吉 宏尚  Osaka City University, 大学院・理学研究科, 特任准教授 (80397611)

Project Period (FY) 2005 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥2,500,000 (Direct Cost: ¥2,500,000)
Fiscal Year 2007: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2006: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2005: ¥900,000 (Direct Cost: ¥900,000)
Keywords幾何学 / トポロジー
Research Abstract

穴あきトーラスクライン群からなる集合をPとするとき,前年度までに,P上でフォード領域の組み合わせ構造を用いて定義されるsideparameterとクライン多様体の無限遠境界に現れるリーマン面の等角構造を用いて定義されるendinvariantとの間の距離に対する上からの一様な評価が得られていた.その成果を発展させることにより,以下の事実を証明することができた.
● Side parameterがPに対する完全不変量であることがわかった.
● End invariantの逆写像とside parameterの合成として得られるパラメータの空間上の自己全単射は同相写像であることがわかった.
この新しく判明した事実は,フォード領域の組み合わせ構造とクライン多様体の無限遠境界の等角構造が擬フックス群の退化に関して同じ情報を持つことを示し,本研究の主題であった,組み合わせ構造と解析的構造の比較に対して大きな前進をもたらした.
この成果をアメリカで開催された国際会議「Knotting Mathematics and Art: Confbrence in Low Dimensional Topology and Mathematical Art」などで発表した.
また,前年度までに得られた,穴あきトーラスと閉区間の直積に対し,閉区間の内部の1点に射影する穴あきトーラス内の本質的単純閉曲線に対し,その曲線に沿った(適当な枠に関する)r-デーン手術を施すことで構成できる3次元多様体の双曲構造に対するフォード領域の組み合わせ構造に関する研究の概要を「Ford dolnain of a certain hyperbolic 3-manifbld whose boundary consists of a pair of once-punctured tori」として発表した.

Report

(3 results)
  • 2007 Annual Research Report
  • 2006 Annual Research Report
  • 2005 Annual Research Report
  • Research Products

    (5 results)

All 2007 2006 Other

All Journal Article (5 results) (of which Peer Reviewed: 2 results)

  • [Journal Article] Punctured torus groups and 2-bridge knot groups(I)2007

    • Author(s)
      Hirotaka Akiyoshi, Makoto Sakuma, Yasushi Yamashita and Masaaki Wada
    • Journal Title

      Lecture Notes In Mathematics, Springer 1909

      Pages: 1-252

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Ford domain of a certain hyperbolic 3-manifold whose boundary consists of a pair of once-punctured tori2007

    • Author(s)
      Hirotaka Akiyoshi
    • Journal Title

      Series on Knots and Everything, world Scientific Pub 40

      Pages: 1-8

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Variations of McShane's identity for punctured surface groups2006

    • Author(s)
      Hirotaka Akiyoshi, Hideki Miyachi, Makoto Sakuma
    • Journal Title

      Spaces of Kleinian groups, London Math. Soc. Lecture Note Ser., 329 (Cambridge Univ. Press, Cambridge) 329

      Pages: 151-185

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Punctured torus groups and 2-bridge knot groups (I)

    • Author(s)
      Hirotaka Akiyoshi, Makoto Sakuma, Yasushi Yamashita, Masaaki Wada
    • Journal Title

      Lecture Notes In Mathematics 1909 (springer) 1909(として出版予定)

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Variations of McShane's identity for punctured surface groups

    • Author(s)
      Hirotaka Akiyoshi, Hideki Miyachi, Makoto Sakuma
    • Journal Title

      London Mathematical Society Lecture Notes (Y.Minsky, M.Sakuma, C.Series (Eds.))(Cambridge University Press) (掲載予定)

    • Related Report
      2005 Annual Research Report

URL: 

Published: 2005-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi