A preparation and optical property study of Nanostructured-Metal Materials
Project/Area Number |
17F17793
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 外国 |
Research Field |
Nanomaterials engineering
|
Research Institution | Tohoku University |
Principal Investigator |
渡辺 健太郎 (2018-2019) 東北大学, 材料科学高等研究所, 准教授 (40582078)
平田 秋彦 (2017) 東北大学, 材料科学高等研究所, 准教授 (90350488)
|
Co-Investigator(Kenkyū-buntansha) |
XIA YANJIE 東北大学, 材料科学高等研究所, 外国人特別研究員
|
Project Period (FY) |
2017-11-10 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥2,200,000 (Direct Cost: ¥2,200,000)
Fiscal Year 2019: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 2018: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2017: ¥900,000 (Direct Cost: ¥900,000)
|
Keywords | Vapor Phase Dealloying / Nanoporous Metal / nanoporous materials |
Outline of Annual Research Achievements |
Vapor phase dealloying (VPD) is expected as a universal, highly efficient and environmentally friendly method for fabricating 3D bicontinuous nanoporous metals, by using vapor pressure difference between constituent elements. However, the relation between dealloying conditions and above microstructural parameters are still unclear due to underlying dealloying kinetics, such as thermal evaporation of constituent element, resulting diffusion both in bulk alloys and in pore channels, and alloys phase evolution. In this work, 3D bicontinuous nanoporous Cu by vapor phase dealloying (VPD) of Cu12Zn88 alloy is chosen as the model system and its dealloying kinetics and alloy phase evolution are investigated. We found that Zn is selectively evaporated out from the precursor Cu12Zn88 alloy during the process of VPD due to the vapor pressure difference between Cu and Zn and an intermediate phase Cu36Zn64 is formed in the dealloying front before Zn evaporation. The power law relation between the pore depth and dealloying time reveals the bulk diffusion controlled dealloying process for intermediate phase. The porous structure starts to appear in the intermediate region and the appearance time closely relies on dealloying temperature. The constant dealloying front velocity is mainly dominated by dealloying temperature and slightly increased in high vacuum condition, indicating that the dealloying kinetics is dominated by interfacial effect rather than mass transport effect in pore channel.
|
Research Progress Status |
令和元年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
令和元年度が最終年度であるため、記入しない。
|
Report
(3 results)
Research Products
(3 results)