• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Methods for selecting and testing hypothesis in big data-driven science and its demonstration in materials, biology, and medicine

Research Project

Project/Area Number 17H00758
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionNagoya Institute of Technology

Principal Investigator

Takeuchi Ichiro  名古屋工業大学, 工学(系)研究科(研究院), 教授 (40335146)

Co-Investigator(Kenkyū-buntansha) 二宮 嘉行  統計数理研究所, 数理・推論研究系, 教授 (50343330)
豊浦 和明  京都大学, 工学研究科, 准教授 (60590172)
安河内 彦輝  三重大学, 地域イノベーション推進機構, 助教 (60624525)
井上 圭一  東京大学, 物性研究所, 准教授 (90467001)
Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥42,510,000 (Direct Cost: ¥32,700,000、Indirect Cost: ¥9,810,000)
Fiscal Year 2019: ¥12,350,000 (Direct Cost: ¥9,500,000、Indirect Cost: ¥2,850,000)
Fiscal Year 2018: ¥12,350,000 (Direct Cost: ¥9,500,000、Indirect Cost: ¥2,850,000)
Fiscal Year 2017: ¥11,700,000 (Direct Cost: ¥9,000,000、Indirect Cost: ¥2,700,000)
Keywords機械学習 / 統計科学 / 材料科学 / 生物化学 / 医療科学 / Post-Selection Inference / 生物科学 / Selective Inference / ビッグ・データ / ビッグデータ
Outline of Final Research Achievements

In various fields of scientific research, it has become possible to measure vast amounts of data about the research subject. The approach to scientific discovery based on such data is called data-driven science. In data-driven science, hypotheses are selected based on the data, but there is a risk that hypotheses that are over-fitted to the data may be selected incorrectly, and reliability evaluation of the data-driven hypotheses must be conducted appropriately. In this study, we established and demonstrated a method for evaluating the reliability of data-driven hypotheses in the fields of materials, biology, and medicine using a technique called selective inference.

Academic Significance and Societal Importance of the Research Achievements

研究対象から得られるデータに基づいて科学的発見を目指すアプローチはデータ駆動型科学と呼ばれ,さまざまな分野で有望視されている.しかしながら,データから仮説を選択する際に選択バイアスが生じてしまい,特に,誤った意思決定が重大なリスクとなる分野においては,データ駆動型仮説の信頼性評価が不可欠である.本研究ではデータ駆動型仮説の信頼性評価を行うための方法論を確立し,これをさまざまな分野で実証した.本研究の成果は健在なデータ駆動型科学の発展に寄与するものである.

Report

(4 results)
  • 2020 Final Research Report ( PDF )
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • Research Products

    (23 results)

All 2019 2018 2017

All Journal Article (10 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 10 results,  Open Access: 4 results) Presentation (13 results) (of which Invited: 7 results)

  • [Journal Article] Learning Interpretable Metric between Graphs2019

    • Author(s)
      Yoshida Tomoki、Takeuchi Ichiro、Karasuyama Masayuki
    • Journal Title

      Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD2019)

      Volume: NA Pages: 1026-1036

    • DOI

      10.1145/3292500.3330845

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Selective inference via marginal screening for high dimensional classification2019

    • Author(s)
      Yuta Umezu, Ichiro Takeuchi
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: 2 Issue: 2 Pages: 559-589

    • DOI

      10.1007/s42081-019-00058-8

    • NAID

      210000171950

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Safe Grid Search with Optimal Complexity2019

    • Author(s)
      Ndiaye Y., Le T., Fercoq O., Salmon J., Takeuchi I.
    • Journal Title

      Proceedings of International Conference on Machine Learning (ICML2019)

      Volume: NA

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Understanding Colour Tuning Rules and Predicting Absorption Wavelengths of Microbial Rhodopsins by Data-Driven Machine-Learning Approach2018

    • Author(s)
      Karasuyama Masayuki、Inoue Keiichi、Nakamura Ryoko、Kandori Hideki、Takeuchi Ichiro
    • Journal Title

      Scientific Reports

      Volume: 8 Issue: 1 Pages: 15580-15580

    • DOI

      10.1038/s41598-018-33984-w

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Bayesian-Driven First-Principles Calculations for Accelerating Exploration of Fast Ion Conductors for Rechargeable Battery Application2018

    • Author(s)
      Jalem Randy、Kanamori Kenta、Takeuchi Ichiro、Nakayama Masanobu、Yamasaki Hisatsugu、Saito Toshiya
    • Journal Title

      Scientific Reports

      Volume: 8 Issue: 1

    • DOI

      10.1038/s41598-018-23852-y

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Knowledge-transfer-based cost-effective search for interface structures: A case study on fcc-Al [110] tilt grain boundary2018

    • Author(s)
      Yonezu Tomohiro、Tamura Tomoyuki、Takeuchi Ichiro、Karasuyama Masayuki
    • Journal Title

      Physical Review Materials

      Volume: 2 Issue: 11

    • DOI

      10.1103/physrevmaterials.2.113802

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Exploring a potential energy surface by machine learning for characterizing atomic transport2018

    • Author(s)
      Kanamori Kenta、Toyoura Kazuaki、Honda Junya、Hattori Kazuki、Seko Atsuto、Karasuyama Masayuki、Shitara Kazuki、Shiga Motoki、Kuwabara Akihide、Takeuchi Ichiro
    • Journal Title

      Physical Review B

      Volume: 97 Issue: 12 Pages: 125124-125124

    • DOI

      10.1103/physrevb.97.125124

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Fast and Scalable Prediction of Local Energy at Grain Boundaries: Machine-learning based Modeling of First-principles Calculations2017

    • Author(s)
      T. Tamura,M. Karasuyama,R. Kobayashi,R. Arakawa,Y. Shiihara,I. Takeuchi
    • Journal Title

      Modelling and Simulation in Materials Science and Engineering

      Volume: 25-7 Pages: 075003-075003

    • NAID

      130007508444

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Prognostic relevance of genetic alterations in diffuse lower-grade gliomas2017

    • Author(s)
      Aoki Kosuke、Nakamura Hideo、Suzuki Hiromichi et al.
    • Journal Title

      Neuro-Oncology

      Volume: 20 Issue: 1 Pages: 66-77

    • DOI

      10.1093/neuonc/nox132

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Identification of CDC42BPG as a novel susceptibility locus for hyperuricemia in a Japanese population2017

    • Author(s)
      Y. Yasukochi,J. Sakuma,I. Takeuchi,K. Kato,M. Oguri,T. Fujimaki,H. Horibe,Y. Yamada
    • Journal Title

      Molecular Genetics and Genomics

      Volume: NA Issue: 2 Pages: 371-379

    • DOI

      10.1007/s00438-017-1394-1

    • NAID

      120007134371

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Selective Inference による教師なし学習結果の信頼性評価2019

    • Author(s)
      竹内一郎
    • Organizer
      統計学と機械学習の数理と展開
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] データ駆動型人工知能のものづくりへの活用2019

    • Author(s)
      竹内一郎
    • Organizer
      電子情報通信学会東海支部講演会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] データ駆動型科学のための統計的推論法2018

    • Author(s)
      竹内一郎
    • Organizer
      情報理論とその応用シンポジウム(SITA2018)
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Selective Inference を用いた不均一データ分析のための統計的推論2018

    • Author(s)
      竹内一郎
    • Organizer
      統計関連学会連合大会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] ガウス過程の導関数に基づく極小点の同定のための能動学習2018

    • Author(s)
      稲津佑,椙田大輔,豊浦和明,竹内一郎
    • Organizer
      第21回情報論的学習理論ワークショップ (IBIS2018)
    • Related Report
      2018 Annual Research Report
  • [Presentation] そのクラスタ信用できますか? -クラスタ分割に対する統計的検証-2018

    • Author(s)
      井上茂乗,梅津佑太,竹内一郎
    • Organizer
      第21回情報論的学習理論ワークショップ (IBIS2018)
    • Related Report
      2018 Annual Research Report
  • [Presentation] 機械学習による伝導性材料の物性値推定2018

    • Author(s)
      竹内一郎,金森研太,豊浦和明,本多淳也,服部,世古敦人,烏山昌幸,設楽一樹,志賀元紀,桑原彰秀
    • Organizer
      日本物理学会
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] 機械学習によるバイオロギングデータ分析2018

    • Author(s)
      竹内一郎,佐久間拓人,西和弥,梅津佑太,岸本薫,烏山昌幸,梶岡慎輔,山崎修平,木村幸太郎,松本祥子,依田憲,福冨又三郎,設樂久志,小川宏人
    • Organizer
      日本生態学会
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] データ駆動型の科学的発見とその材料科学への応用2018

    • Author(s)
      竹内一郎
    • Organizer
      金属学会セミナー
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] 系列データからのクラス特異的代表パターン選出: 分類モデルとMorse Complex によるアプローチ2018

    • Author(s)
      烏山昌幸,竹内一郎
    • Organizer
      電子情報通信学会 第32回情報論的学習理論と機械学習研究会(IBISML)
    • Related Report
      2017 Annual Research Report
  • [Presentation] マージン最大化距離学習におけるセーフスクリーニング2017

    • Author(s)
      吉田知貴,竹内一郎,烏山昌幸
    • Organizer
      電子情報通信学会 第31回情報論的学習理論と機械学習研究会(IBISML)
    • Related Report
      2017 Annual Research Report
  • [Presentation] ヘテロジニアスなデータに対するクラスタリング後の推論2017

    • Author(s)
      井上茂乗,梅津佑太,坪田庄真,竹内一郎
    • Organizer
      電子情報通信学会 第31回情報論的学習理論と機械学習研究会(IBISML)
    • Related Report
      2017 Annual Research Report
  • [Presentation] コスト考慮型ベイズ最適化による複数目的関数最適化とその材料分野への応用2017

    • Author(s)
      米津智弘,田村友幸,小林亮,竹内一郎,烏山昌幸
    • Organizer
      電子情報通信学会 第29回情報論的学習理論と機械学習研究会(IBISML)
    • Related Report
      2017 Annual Research Report

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi