Project/Area Number |
17H01069
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
General applied physics
|
Research Institution | Nagoya University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
柳 和宏 首都大学東京, 理学研究科, 教授 (30415757)
岡田 晋 筑波大学, 数理物質系, 教授 (70302388)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥42,900,000 (Direct Cost: ¥33,000,000、Indirect Cost: ¥9,900,000)
Fiscal Year 2019: ¥14,950,000 (Direct Cost: ¥11,500,000、Indirect Cost: ¥3,450,000)
Fiscal Year 2018: ¥16,250,000 (Direct Cost: ¥12,500,000、Indirect Cost: ¥3,750,000)
Fiscal Year 2017: ¥11,700,000 (Direct Cost: ¥9,000,000、Indirect Cost: ¥2,700,000)
|
Keywords | π電子材料 / 物性評価 / 素子作製 / マイクロ・ナノデバイス / 物性実験 / 分子性固体 / 複合材料・物性 / パイ電子材料 |
Outline of Final Research Achievements |
This research project investigated the thermoelectric properties of flexible, large-area van der Waals materials, such as such as organic conducting polymers, carbon nanotubes and graphene, because these materials has attracted much attention as power generators of IoT (Internet of Things) devices. Particularly, using the electric double layer gating technique, both the continuous doping of hole or electron carriers and modulation of the Fermi energy are achieved, leading to wide-range control of the Seebeck coefficient and electrical conductivity. As the results, we clarified the thermoelectric properties of flexible, large-area van der Waals materials and realized the best power factor among large-scale flexible materials in large-area graphene films grown by chemical vapor deposition (CVD) methods, suggesting that CVD-grown large-area graphene films have potential for thermoelectric applications.
|
Academic Significance and Societal Importance of the Research Achievements |
近年、超低消費電力LSI・センサーの開発により様々な機器をインターネットにつなぐ試み(Internet of Things, IoT)が急速に進展しており、これらの電力源確保が最重要課題である。特に、人体に近い素子には安全性・柔軟性・伸縮性が求められており、有機材料に代表されるファンデルワールス材料を用いた熱電変換素子が有力な選択肢である。しかしながら、これら材料においては高度なキャリアドーピング手法の欠如により特性解明を困難にしていた。本研究は、我々の独自技術である電解質を用いたキャリドーピング手法と熱電変換素子としての評価実験を融合させ、ファンデルワールス材料の特性解明に成功した。
|