Project/Area Number |
17H01152
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Biological physics/Chemical physics/Soft matter physics
|
Research Institution | Nagoya University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
畝山 多加志 名古屋大学, 工学研究科, 准教授 (10524720)
山本 哲也 名古屋大学, 工学研究科, 助教 (40610027)
天本 義史 名古屋大学, 工学研究科, 学振特別研究員(SPD) (70773159)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥45,630,000 (Direct Cost: ¥35,100,000、Indirect Cost: ¥10,530,000)
Fiscal Year 2019: ¥9,750,000 (Direct Cost: ¥7,500,000、Indirect Cost: ¥2,250,000)
Fiscal Year 2018: ¥9,750,000 (Direct Cost: ¥7,500,000、Indirect Cost: ¥2,250,000)
Fiscal Year 2017: ¥26,130,000 (Direct Cost: ¥20,100,000、Indirect Cost: ¥6,030,000)
|
Keywords | 高分子 / ナノコンポジット / ダイナミクス / 粘弾性 / レオロジー / 粘度 / シミュレーション / コンポジット / ナノ粒子 / 管模型 / 理論 / 分子理論 / 高分子ダイナミクス |
Outline of Final Research Achievements |
Polymer composites have been widely used in the industry. However, the dynamics inside have not been fully clarified yet, though it dominates the processability. The reason is that the conventional theories and the molecular simulation techniques are not practically useful for the analysis of the cooperative motion of polymers and fillers. In this study, we aimed to develop a new molecular simulation method and a molecular theory that can deal with the long-time dynamics of polymer nano-composites. We have extended the multi-chain slip-spring (MCSS) model, which has been being developed in our group. From the simulation results, we have constructed a preliminary molecular model based on the tube theory to consider the effects of nano-particles on the polymer motion via the idea of constraint release. To evaluate the developed simulations and the theory, we have conducted the experiments as well.
|
Academic Significance and Societal Importance of the Research Achievements |
高分子に微細な固体粒子を含む,高分子ナノコンポジットのダイナミクスを計算するシミュレーション手法が開発できた.この手法により同系の粘度などのマクロな流動物性の解析が可能であり,また流動中に起きる構造変化も観察できる.このような計算は従来の手法では実用的に困難である,本手法が工学的な材料開発に応用されれば,様々な機能性材料の開発や加工条件の検討に役立つものと考えられる.
|