Project/Area Number |
17H01320
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Inorganic materials/Physical properties
|
Research Institution | Kyoto University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
藤田 晃司 京都大学, 工学研究科, 教授 (50314240)
村井 俊介 京都大学, 工学研究科, 助教 (20378805)
北條 元 九州大学, 総合理工学研究院, 准教授 (90611369)
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥43,030,000 (Direct Cost: ¥33,100,000、Indirect Cost: ¥9,930,000)
Fiscal Year 2020: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2019: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2018: ¥30,940,000 (Direct Cost: ¥23,800,000、Indirect Cost: ¥7,140,000)
Fiscal Year 2017: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
|
Keywords | 酸化物 / 磁性体 / 誘電体 / マルチフェロイクス / 磁気光学 / プラズモニクス / 薄膜 / 単結晶 / 磁性材料 / 複合材料・物性 / ペロブスカイト |
Outline of Final Research Achievements |
Materials, which can not only respond to external electric fields to accumulate positive and negative charges separately like a capacitor but also simultaneously respond to external magnetic fields like a permanent magnet, are called multiferroics. Also, magnets which can interact strongly and uniquely with light are called magnetooptical materials. The former materials can be practically utilized as a high-density information storage device. The latter is a promising device for holography, three-dimensional memory system using light, as well as for an optical isolator, which can transmit a light signal only in one direction. In the present study, novel materials which show the above-mentioned properties and functionalities have been found. Also, the mechanism to lead to those properties has been revealed.
|
Academic Significance and Societal Importance of the Research Achievements |
マルチフェロイクスならびに可視光に対して優れた特性を示す磁気光学材料はそれほど多くは知られていない。そのため、新しい物質を見いだして、性質が現れる機構を明らかにすることは固体化学や材料科学といった学問分野に寄与するものである。また、マルチフェロイクスは電場と磁場に応答できることから高密度記録材料として、また、磁気光学材料は3次元記録システムであるホログラフィーなどへの応用が考えられ、新物質の発見は実用的な面からも価値がある。
|