• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of SMAD for big query on big data

Research Project

Project/Area Number 17H01693
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Theory of informatics
Research InstitutionThe University of Tokyo

Principal Investigator

Shibuya Tetsuo  東京大学, 医科学研究所, 教授 (60396893)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥11,570,000 (Direct Cost: ¥8,900,000、Indirect Cost: ¥2,670,000)
Fiscal Year 2020: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2019: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2018: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2017: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Keywordsアルゴリズム理論 / アルゴリズム / バイオインフォマティクス / ビッグデータ / 次世代シークエンサー / 差分プライバシー / 秘匿検索 / 検索技術 / ビッグクエリー / SMAD / SMAD
Outline of Final Research Achievements

A new technology for searching big data is desired. SMAD (Statistical Model-based Algorithm Design) is a candidate for improving these searching algorithms. In this research, we explored applications of SMAD technology to big query/big data searching problems. In particular, we developed new searching technologies for individual genome databases, protein 3-D databases, and natural language text databases. Moreover we succeeded in developing technologies for privacy preserving, memory distribution for PCM memories, and next generation sequencer read analysis.

Academic Significance and Societal Importance of the Research Achievements

近年のデータ爆発は、大規模ビッグデータに対する大規模なクエリーを著しく困難にしており、それに対する超効率な検索基盤技術の開発が求められている。本研究では、SMAD技術を核に、ゲノムデータベース、タンパク質立体構造データベース、自然言語テキストデータベースなど様々なデータベースに対する検索技術の開発に成功したほか、プライバシー保護、PCMメモリの活用、次世代シークエンサー解析など、様々なデータ解析の基盤技術の高度化にも貢献することに成功している。これらの技術によって、今後さらにビッグデータの利活用が高度化されることが期待できる。

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • Research Products

    (13 results)

All 2021 2020 2019 2018 2017

All Journal Article (8 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 8 results,  Open Access: 6 results) Presentation (5 results) (of which Int'l Joint Research: 2 results,  Invited: 2 results)

  • [Journal Article] Transfer Learning for Biomedical Question Answering2020

    • Author(s)
      Arda Akdemir, Tetsuo Shibuya
    • Journal Title

      Proc. CLEF 2020, CEUR Workshop Proceedings

      Volume: 2696(66) Pages: 1-15

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Wear Leveling Revisited2020

    • Author(s)
      Taku Onodera, Tetsuo Shibuya
    • Journal Title

      Leibniz International Proceedings in Informatics (LIPIcs)

      Volume: 181(65) Pages: 1-17

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Subword Contextual Embeddings for Languages with Rich Morphology2020

    • Author(s)
      Arda Akdemir, Tetsuo Shibuya, Tunga Gungor
    • Journal Title

      Proc. ICMLA 2020

      Volume: 1 Pages: 994-1001

    • DOI

      10.1109/icmla51294.2020.00161

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Nanopore base-calling from a perspective of instance segmentation2020

    • Author(s)
      Zhang Y-Z, Akdemir A, Tremmel G, Imoto S, Miyano S, Shibuya T, Yamaguchi R.
    • Journal Title

      BMC Bioinformatics

      Volume: 23;21(Suppl 3) Issue: S3 Pages: 136-136

    • DOI

      10.1186/s12859-020-3459-0

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] FOREWORD2019

    • Author(s)
      Yoichi Sasaki, Tetsuo Shibuya, Kimihito Ito, and Hiroki Arimura
    • Journal Title

      IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences

      Volume: E102.A Issue: 9 Pages: 986-986

    • DOI

      10.1587/transfun.E102.A.986

    • NAID

      130007699535

    • ISSN
      0916-8508, 1745-1337
    • Year and Date
      2019-09-01
    • Related Report
      2019 Annual Research Report 2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Application-Oriented Succinct Data Structures for Big Data, The Review of Socionetwork Strategies2019

    • Author(s)
      Tetsuo Shibuya
    • Journal Title

      The Review of Socionetwork Strategies

      Volume: 13 Issue: 2 Pages: 227-236

    • DOI

      10.1007/s12626-019-00045-1

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Succinct Oblivious RAM2018

    • Author(s)
      Taku Onodera, Tetsuo Shibuya
    • Journal Title

      Proc. STACS

      Volume: 96

    • DOI

      10.4230/LIPIcs.STACS.2018.52

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Revealing phenotype-associated functional differences by genome-wide scan of ancient haplotype blocks2017

    • Author(s)
      Onuki Ritsuko、Yamaguchi Rui、Shibuya Tetsuo、Kanehisa Minoru、Goto Susumu
    • Journal Title

      PLOS ONE

      Volume: 12 Issue: 4 Pages: 0176530-0176530

    • DOI

      10.1371/journal.pone.0176530

    • NAID

      120006309307

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Algorithmic Challenges for Biomedical Big Data2021

    • Author(s)
      Tetsuo Shibuya
    • Organizer
      The 11th International Conference on Bioscience, Biochemistry and Bioinformatics
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] スパコンシステム「SHIROKANE」とゲノム医療2020

    • Author(s)
      渋谷哲朗
    • Organizer
      第9回生命医薬情報連合大会
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Nanopore base-calling from a perspective of instance segmentation2019

    • Author(s)
      Yao-zhong Zhang, Arda Akdemir, Georg Tremmel, Seiya Imoto, Satoru Miyano, Tetsuo Shibuya, Rui Yamaguchi
    • Organizer
      ISMB-ECCB 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 重み付き有向非巡回グラフに対する効率良いテキスト索引の構築アルゴリズム2018

    • Author(s)
      山岸大騎,髙木拓也,渋谷哲朗,有村博紀.
    • Organizer
      第17回情報科学技術フォーラム
    • Related Report
      2018 Annual Research Report
  • [Presentation] 簡潔Oblivious RAM2018

    • Author(s)
      小野寺拓,渋谷哲朗
    • Organizer
      電子情報通信学会 情報セキュリティ研究会
    • Related Report
      2017 Annual Research Report

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi