• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Feature Representation Design for Graph Machine Learning

Research Project

Project/Area Number 17H01783
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionInstitute of Physical and Chemical Research (2019-2020)
Hokkaido University (2017-2018)

Principal Investigator

Takigawa Ichigaku  国立研究開発法人理化学研究所, 革新知能統合研究センター, 研究員 (10374597)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥12,870,000 (Direct Cost: ¥9,900,000、Indirect Cost: ¥2,970,000)
Fiscal Year 2020: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2019: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2018: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2017: ¥5,590,000 (Direct Cost: ¥4,300,000、Indirect Cost: ¥1,290,000)
Keywords機械学習 / グラフデータ / 分子表現 / 表現学習 / 高次元空間 / 特徴設計
Outline of Final Research Achievements

This project focuses on the feature representation problems for graph machine learning. By extending our previous work on sparse linear learning over the subgraph-feature search space, we developed novel related methods such as decision tree ensemble learning over subgraph search space, decision tree learning based on regarding the subgraph search space as a trie, efficient learning by stochastic search over subgraph space, graph learning by subgraph co-occurrences, compressing the subgraph search space by decision diagrams, dual graph convolutions for a graph of graphs, self-attentive graph learning for molecular property prediction, and user-edit aware generative graph autocompletion.

Academic Significance and Societal Importance of the Research Achievements

分子のグラフ表現の主対象である有機低分子は(a)医薬品、細胞内代謝物、有機EL材料、食品、化粧品、など波及範囲が広い、(b)活性の発現機序がモデル化困難な程に複雑、(c)可能な分子の候補数が組合せ的に巨大、という背景から活性の理解にデータ科学の技術が強く望まれており、本課題で得られる知見により広い波及効果が期待できる。また、グラフ表現データという設定は広い汎用性を持ち、公的リポジトリの多様なアッセイデータに基づく具体的な評価系を多数構築しやすく、強い特徴間相関や指数的な高次元性に由来する困難を体系的に評価できる良いモデルケースとなっている。

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • Research Products

    (68 results)

All 2021 2020 2019 2018 2017

All Journal Article (14 results) (of which Peer Reviewed: 10 results,  Open Access: 2 results) Presentation (54 results) (of which Int'l Joint Research: 13 results,  Invited: 24 results)

  • [Journal Article] Minor-embedding heuristics for large-scale annealing processors with sparse hardware graphs of up to 102,400 nodes2021

    • Author(s)
      Sugie Y, Yoshida Y, Mertig N, Takemoto T, Teramoto H, Nakamura A, Takigawa I, Minato S, Yamaoka M, Komatsuzaki T
    • Journal Title

      Soft Computing

      Volume: 25(3) Issue: 3 Pages: 1731-1749

    • DOI

      10.1007/s00500-020-05502-6

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 3.触媒研究における機械学習と最適実験計画2020

    • Author(s)
      瀧川一学
    • Journal Title

      Denki Kagaku

      Volume: 88 Issue: 1 Pages: 14-20

    • DOI

      10.5796/denkikagaku.20-FE0004

    • NAID

      130007806101

    • ISSN
      2433-3255, 2433-3263
    • Year and Date
      2020-03-05
    • Related Report
      2019 Annual Research Report
  • [Journal Article] Machine learning predictions of adsorption energies of CH4-related species.2020

    • Author(s)
      Toyao T, Takigawa I, Shimizu K
    • Journal Title

      Direct Hydroxylation of Methane. Springer, Singapore

      Volume: 124(28) Pages: 135-149

    • DOI

      10.1007/978-981-15-6986-9_7

    • ISBN
      9789811569852, 9789811569869
    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Frontier molecular orbital based analysis of solid-adsorbate interactions over group 13 metal oxide surfaces2020

    • Author(s)
      Liu C, Li Y, Takao M, Toyao T, Kamachi T, Hinuma Y, Takigawa I, Shimizu K
    • Journal Title

      The Journal of Physical Chemistry C

      Volume: 124(28) Issue: 28 Pages: 15355-65

    • DOI

      10.1021/acs.jpcc.0c04480

    • NAID

      120007116482

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Dual graph convolutional neural network for predicting chemical networks2020

    • Author(s)
      Harada Shonosuke、Akita Hirotaka、Tsubaki Masashi、Baba Yukino、Takigawa Ichigaku、Yamanishi Yoshihiro、Kashima Hisashi
    • Journal Title

      BMC Bioinformatics

      Volume: 21 Issue: S3 Pages: 1-13

    • DOI

      10.1186/s12859-020-3378-0

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 触媒インフォマティクスの動向2020

    • Author(s)
      鳥屋尾 隆・清水研一・瀧川一学
    • Journal Title

      科学と工業

      Volume: 94(7) Pages: 182-187

    • Related Report
      2020 Annual Research Report
  • [Journal Article] Machine Learning for Catalysis Informatics: Recent Applications and Prospects2019

    • Author(s)
      Toyao Takashi、Maeno Zen、Takakusagi Satoru、Kamachi Takashi、Takigawa Ichigaku、Shimizu Ken-ichi
    • Journal Title

      ACS Catalysis

      Volume: 10 Issue: 3 Pages: 2260-2297

    • DOI

      10.1021/acscatal.9b04186

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Statistical Analysis and Discovery of Heterogeneous Catalysts Based on Machine Learning from Diverse Published Data2019

    • Author(s)
      Suzuki Keisuke、Toyao Takashi、Maeno Zen、Takakusagi Satoru、Shimizu Ken‐ichi、Takigawa Ichigaku
    • Journal Title

      ChemCatChem

      Volume: 11 Issue: 18 Pages: 4537-4547

    • DOI

      10.1002/cctc.201900971

    • NAID

      120006866531

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Linear Correlations between Adsorption Energies and HOMO Levels for the Adsorption of Small Molecules on TiO2 Surfaces2019

    • Author(s)
      Kamachi Takashi、Tatsumi Toshinobu、Toyao Takashi、Hinuma Yoyo、Maeno Zen、Takakusagi Satoru、Furukawa Shinya、Takigawa Ichigaku、Shimizu Ken-ichi
    • Journal Title

      The Journal of Physical Chemistry C

      Volume: 123 Issue: 34 Pages: 20988-20997

    • DOI

      10.1021/acs.jpcc.9b05707

    • NAID

      120006882088

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 人工知能学会基本問題研究会2019

    • Author(s)
      瀧川一学
    • Journal Title

      人工知能

      Volume: 34 Pages: 603-611

    • Related Report
      2019 Annual Research Report
  • [Journal Article] Machine Learning Predictions of Factors Affecting the Activity of Heterogeneous Metal Catalysts2018

    • Author(s)
      Takigawa I, Shimizu K, Tsuda K, Takakusagi S
    • Journal Title

      Nanoinformatics

      Volume: 1 Pages: 45-64

    • DOI

      10.1007/978-981-10-7617-6_3

    • ISBN
      9789811076169, 9789811076176
    • Related Report
      2017 Annual Research Report
    • Open Access
  • [Journal Article] Toward effective utilization of methane: machine learning prediction of adsorption energies on metal alloys2018

    • Author(s)
      Toyao T, Suzuki K, Kikuchi S, Takakusagi S, Shimizu K, Takigawa I
    • Journal Title

      The Journal of Physical Chemistry C

      Volume: 122 (15) Issue: 15 Pages: 8315-8326

    • DOI

      10.1021/acs.jpcc.7b12670

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Machine learning reveals orbital interaction in materials2017

    • Author(s)
      Pham T L, Kino H, Terakura K, Miyake T, Tsuda K, Takigawa I, Dam H C
    • Journal Title

      Science and Technology of Advanced Materials

      Volume: 18(1) Issue: 1 Pages: 756-765

    • DOI

      10.1080/14686996.2017.1378060

    • NAID

      120006714595

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Genomic copy number variation analysis in multiple system atrophy2017

    • Author(s)
      Hama Yuka、Katsu Masataka、Takigawa Ichigaku、Yabe Ichiro、Matsushima Masaaki、Takahashi Ikuko、Katayama Takayuki、Utsumi Jun、Sasaki Hidenao
    • Journal Title

      Molecular Brain

      Volume: 10 Issue: 1 Pages: 54-54

    • DOI

      10.1186/s13041-017-0335-6

    • NAID

      120006394570

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Presentation] 深層生成モデルを用いた分子グラフ自動補完2021

    • Author(s)
      胡晟・瀧川一学・肖川
    • Organizer
      第13回データ工学と情報マネジメントに関するフォーラム(DEIM2021)
    • Related Report
      2020 Annual Research Report
  • [Presentation] コスト制約つき組合せ問題に対するZDDを用いた高速な解列挙手法2020

    • Author(s)
      湊真一・番原睦則・堀山貴史・川原純・瀧川一学・山口勇太郎
    • Organizer
      電子情報通信学会 コンピュテーション研究会(COMP)
    • Related Report
      2020 Annual Research Report
  • [Presentation] 不均一系触媒研究のための機械学習と最適実験計画2020

    • Author(s)
      瀧川一学
    • Organizer
      理研CSRSインフォマティクス・データ科学推進プログラム成果報告会
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 分子のグラフ表現と機械学習2020

    • Author(s)
      瀧川一学
    • Organizer
      セッション「データサイエンスの世界をのぞいてみませんか? 」, 第10回CSJ化学フェスタ2020
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 機械学習による化学反応の予測と設計2020

    • Author(s)
      瀧川一学
    • Organizer
      セッション「生命科学・材料科学におけるデータサイエンスの最前線」、2020年度統計関連学会連合大会
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Efficiently enumerating substrings with statistically significant frequencies of locally optimal occurrences in gigantic string2020

    • Author(s)
      Nakamura A, Takigawa I, Mamitsuka H
    • Organizer
      34th AAAI Conference on Artificial Intelligence (AAAI-20)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Compiling higher order binary optimization problems into annealing processors2020

    • Author(s)
      Sugie Y, Mertig N, Iwata Y, Teramoto H, Nakamura A, Takigawa I, Minato S, Komatsuzaki T, Takemoto T
    • Organizer
      25th International Symposium on Artificial Life and Robotics (AROB 25th 2020),
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] The interplay between data-driven and theory-driven methods for chemical sciences2020

    • Author(s)
      Takigawa I
    • Organizer
      The 1st International Symposium on Human InformatiX
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 機械学習による化学反応の予測と設計2020

    • Author(s)
      瀧川一学
    • Organizer
      近畿化学協会コンピュータ化学部会 公開講演会(第107回例会)
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Learning relevant molecular representations via self-attentive graph neural networks2019

    • Author(s)
      Kikuchi S, Takigawa I, Oyama S, Kurihara M
    • Organizer
      Workshop on Deep Graph Learning: Methodologies and Applications (DGLMA'19), IEEE BigData'19 Workshop
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Dual graph convolutional neural network for predicting chemical networks2019

    • Author(s)
      Harada S, Akita H, Tsubaki M, Baba Y, Takigawa I, Yamanishi Y, Kashima H
    • Organizer
      Joint 30th International Conference on Genome Informatics (GIW) and Australian Bioinformatics and Computational Biology Society (ABACBS) Annual Conference (GIW/ABACBS 2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Machine Learning and Model-based Optimization for Heterogeneous Catalyst Design and Discovery,2019

    • Author(s)
      Takigawa I
    • Organizer
      The 2nd ICReDD International Symposium - Toward Interdisciplinary Research Guided by Theory and Calculation
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] ランダム分割木に基づく勾配ブースティングの検証2019

    • Author(s)
      松田 祐汰・瀧川一学・有村博紀
    • Organizer
      第22回情報論的学習理論ワークショップ (IBIS 2019)
    • Related Report
      2019 Annual Research Report
  • [Presentation] 機械学習によるメタン酸化カップリング反応に有効な触媒探索2019

    • Author(s)
      高尾基史・鳥屋尾 隆・前野禅・高草木 達・瀧川一学・清水研一
    • Organizer
      第42回ケモインフォマティクス討論会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 大きな正規表現に対する系列二分決定グラフを用いた効率よい照合手法2019

    • Author(s)
      瀧澤涼介・喜田拓也・有村博紀・瀧川一学
    • Organizer
      電子情報通信学会 コンピュテーション研究会(COMP)
    • Related Report
      2019 Annual Research Report
  • [Presentation] 化学情報の適応的選択によるグラフ畳み込み学習の解釈性の向上2019

    • Author(s)
      菊地翔馬・栗原正仁・小山聡・瀧川一学
    • Organizer
      情報処理学会北海道シンポジウム2019
    • Related Report
      2019 Annual Research Report
  • [Presentation] 深層学習に基づくペプチド由来イオンピークの新規検出手法2019

    • Author(s)
      守屋勇樹・ 田畑剛・ 岩崎未央・ 河野信・ 五斗進・ 石濱 泰・ 瀧川一学・吉沢明康
    • Organizer
      第67回質量分析総合討論会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 不均一系触媒研究のための機械学習と最適実験計画2019

    • Author(s)
      瀧川一学
    • Organizer
      第80回応用物理学会秋季学術講演会 シンポジウム
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 人工知能の基本問題:これまでとこれから2019

    • Author(s)
      瀧川一学
    • Organizer
      人工知能学会 人工知能基本問題研究会(SIG-FPAI)
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 化学研究のための機械学習と最適実験計画2019

    • Author(s)
      瀧川一学
    • Organizer
      物性研究所スパコン共同利用・CCMS合同研究会「計算物質科学の新展開」
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] ユーザのための機械学習・深層学習入門2019

    • Author(s)
      瀧川一学
    • Organizer
      Rinkai Hackathon 2019 with DDBJing
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 分子のグラフ表現と機械学習2019

    • Author(s)
      瀧川一学
    • Organizer
      有機合成化学協会, 「AIと有機合成化学」第三回勉強会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 機械学習は真の理解や発見に寄与できるか2019

    • Author(s)
      瀧川一学
    • Organizer
      第35回関東CAE懇話会, AI・IoT時代のデータ利活用による理解と発見
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 機械学習による化学反応の予測と設計2019

    • Author(s)
      瀧川一学
    • Organizer
      情報系 Winter Festa Episode 5
    • Related Report
      2019 Annual Research Report
  • [Presentation] 入力表現の適応的選択を伴うグラフ畳み込みネットワーク学習2019

    • Author(s)
      菊地翔馬・瀧川一学
    • Organizer
      情報処理学会 第81回全国大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 非定常データストリームにおける適応的決定木を用いたアンサンブル学習2019

    • Author(s)
      菅原 優・瀧川一学
    • Organizer
      人工知能学会 第109回人工知能基本問題研究会(SIG-FPAI)
    • Related Report
      2018 Annual Research Report
  • [Presentation] 化学反応ネットワークにおける最適反応経路候補の列挙2019

    • Author(s)
      中野 裕太・瀧川一学
    • Organizer
      情報処理学会 第122回数理モデル化と問題解決(MPS)研究発表会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Machine learning and surrogate optimization on heterogeneous catalysts2019

    • Author(s)
      Takigawa I.
    • Organizer
      PRESTO International Symposium on Materials Informatics - Learn the Data, to Bridge the Intelligence into the Future -
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Jointly Learning Relevant Subgraph Patterns and Nnonlinear Models of Their Indicators2018

    • Author(s)
      Shirakawa R, Yokoyama Y, Okazaki F, Takigawa I.
    • Organizer
      The 14th International Conference on Mining and Learning with Graphs (MLG 2018) (KDD'18 Workshop)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Enumerating and Indexing Set Partitions Using Sequence BDDs2018

    • Author(s)
      Takahashi S, Minato S, Takigawa I.
    • Organizer
      2nd International Workshop on Enumeration Problems & Applications (WEPA 2018)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Graph Minors from Simulated Annealing for Annealing Machines with Sparse Connectivity.2018

    • Author(s)
      Sugie Y, Yoshida Y, Mertig N, Takemoto T, Teramoto H, Nakamura A, Takigawa I, Minato S, Yamaoka M, Komatsuzaki T.
    • Organizer
      The 7th International Conference on the Theory and Practice of Natural Computing (TPNC 2018)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] FPGA-Based QBoost with Large-Scale Annealing Processor and Accelerated Hyperparameter Search2018

    • Author(s)
      Takemoto T, Mertig N, Hayashi M, Susa-Tanaka S, Teramoto H, Nakamura A, Takigawa I, Minato S, Komatsuzaki T, Yamaoka M
    • Organizer
      2018 International Conference on Reconfigurable Computing and FPGAs (ReConFig 2018)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 適応的な部分グラフ指示子の探索・選択に基づく非線形グラフ分類回帰2018

    • Author(s)
      白川 稜・横山侑政・岡崎文哉・瀧川一学,
    • Organizer
      第21回情報論的学習理論ワークショップ(IBIS 2018)
    • Related Report
      2018 Annual Research Report
  • [Presentation] SeqBDDを用いた集合分割の族の表現法と実験的評価2018

    • Author(s)
      髙橋翔哉・湊 真一・瀧川一学
    • Organizer
      情報処理学会 第169回アルゴリズム研究会
    • Related Report
      2018 Annual Research Report
  • [Presentation] グラフ断片決定木を用いたグラフ特徴抽出手法2018

    • Author(s)
      坂上陽規・瀧川一学・有村博紀
    • Organizer
      2018年度人工知能学会全国大会(第32回)
    • Related Report
      2018 Annual Research Report
  • [Presentation] Graph of Graphsに対する二重畳み込みニューラルネットワーク2018

    • Author(s)
      原田将之介・秋田大空・椿 真史・馬場 雪乃・瀧川一学・山西芳裕・鹿島久嗣
    • Organizer
      2018年度人工知能学会全国大会(第32回)
    • Related Report
      2018 Annual Research Report
  • [Presentation] 機械学習は真の発見に寄与できるのか?2018

    • Author(s)
      瀧川一学
    • Organizer
      MI2I・JAIST合同シンポジウム((情報統合型物質・材料開発イニシアティブ・北陸先端科学技術大学院大学)データ科学における予測と理解の両立を目指して-分かるとは何か?-
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 決定木・回帰木に基づくアンサンブル学習の最近2018

    • Author(s)
      瀧川一学
    • Organizer
      電子情報通信学会 スマートインフォメディアシステム研究会 (SIS)
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 分子のグラフ表現と機械学習2018

    • Author(s)
      瀧川一学
    • Organizer
      第79回応用物理学会特別シンポジウム:インフォマティクスへの招待~機械学習・インフォマティクスは応用物理をどう変えるか?~,
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] データ駆動科学と機械学習2018

    • Author(s)
      瀧川一学
    • Organizer
      第2回データサイエンス研究会, 岐阜大学
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Machine learning for chemical sciences2018

    • Author(s)
      Takigawa I.
    • Organizer
      2018 International Workshop on New Frontiers in Convergence Science and Technology, HU-SNU Joint Symposium
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] グラフ分類における部分グラフ特徴集合の確率的探索2018

    • Author(s)
      白川 稜・岡崎文哉・瀧川一学
    • Organizer
      人工知能学会 第105回人工知能基本問題研究会(SIG-FPAI)
    • Related Report
      2017 Annual Research Report
  • [Presentation] 部分グラフとその共起を用いたグラフ分類2018

    • Author(s)
      岡崎文哉・瀧川一学
    • Organizer
      人工知能学会 第105回人工知能基本問題研究会(SIG-FPAI)
    • Related Report
      2017 Annual Research Report
  • [Presentation] 決定化されたグラフパターントライの学習アルゴリズム2018

    • Author(s)
      坂上陽規・栗田和宏・瀧川一学・有村博紀
    • Organizer
      人工知能学会 第105回人工知能基本問題研究会(SIG-FPAI)
    • Related Report
      2017 Annual Research Report
  • [Presentation] Frontiers of data-driven property prediction: molecular machine learning2018

    • Author(s)
      Ichigaku Takigawa
    • Organizer
      Innovation Camp 2018 for Computational Materials Science (ICCMS2018)
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] 分子のグラフ表現と機械学習2018

    • Author(s)
      瀧川一学
    • Organizer
      異分野融合ワークショップ「データ科学との融合による化学の新展開」
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] Machine learning predictions of factors affecting the activity of heterogeneous metal catalysts2018

    • Author(s)
      Takigawa I, Shimizu K, Tsuda K, Takakusagi S
    • Organizer
      The 255th ACS (American Chemical Society) National Meeting
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 定量的構造活性相関予測における化合物特徴表現の実験的検証2017

    • Author(s)
      越野 沙耶佳・岡崎 文哉・瀧川一学
    • Organizer
      2017年度人工知能学会全国大会(第31回)
    • Related Report
      2017 Annual Research Report
  • [Presentation] 組成情報と要素特徴量の統合に基づく化学反応量の予測2017

    • Author(s)
      鈴木 慶介・瀧川一学・清水 研一・高草木 達
    • Organizer
      2017年度人工知能学会全国大会(第31回)
    • Related Report
      2017 Annual Research Report
  • [Presentation] 系列二分決定グラフを用いた頻出部分グラフの圧縮表現2017

    • Author(s)
      岡崎文哉・奥山葉月・瀧川一学・ 湊 真一
    • Organizer
      2017年度人工知能学会全国大会(第31回)
    • Related Report
      2017 Annual Research Report
  • [Presentation] 全部分グラフ指示子に基づく決定木の勾配ブースティング2017

    • Author(s)
      横山侑政・瀧川一学
    • Organizer
      2017年度人工知能学会全国大会(第31回)
    • Related Report
      2017 Annual Research Report
  • [Presentation] 機械学習は化学研究の"経験と勘"を合理化できるか?2017

    • Author(s)
      瀧川一学
    • Organizer
      電気化学会 第33回ライラックセミナー・第23回若手研究者交流会,
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] 合成変量とアンサンブル:回帰森と加法モデルの要点2017

    • Author(s)
      瀧川一学
    • Organizer
      電子情報通信学会 信号処理研究会(SIP)
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] グラフデータの機械学習における特徴表現の設計と学習2017

    • Author(s)
      瀧川一学
    • Organizer
      日本応用数理学会 2017年度年会
    • Related Report
      2017 Annual Research Report
    • Invited

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi