Preparation of a polymer shuttle that diffuses and permeates cell membranes and enhancement of cell functions by molecular transport
Project/Area Number |
17H02097
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Biomedical engineering/Biomaterial science and engineering
|
Research Institution | The University of Tokyo |
Principal Investigator |
ISHIHARA KAZUHIKO 東京大学, 大学院工学系研究科(工学部), 教授 (90193341)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥17,680,000 (Direct Cost: ¥13,600,000、Indirect Cost: ¥4,080,000)
Fiscal Year 2019: ¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2018: ¥6,760,000 (Direct Cost: ¥5,200,000、Indirect Cost: ¥1,560,000)
Fiscal Year 2017: ¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
|
Keywords | 電子輸送ポリマー / MPCポリマー / 両親媒性 / 細胞内輸送 / 酸化還元反応 / エネルギー代謝 / がん治療 / 細胞親和性ポリマー / 拡散 / 細胞膜 / 両親媒性ポリマー / ホスホリルコリン基 / 電子伝達系 / 細胞親和性 / 細胞機能制御 / リン脂質ポリマー / 精密合成 |
Outline of Final Research Achievements |
Molecular diffusion into living cells was proposed as a new mechanism of amphiphilic polymer permeation through cell membrane. By attaching functional groups to the polymer, enhancement of cell-specific functions was realized. An electron transport polymer (pMFc) was synthesized from MPC and vinyl ferrocene (VFc). Metabolic alterations were verified for glucose anaerobic glycolysis metabolism in yeast. Anaerobic cultivation of yeast in the presence of oxidized pMFc showed a good correlation between the change in ethanol fermentation and the electron transport rate. It was shown that the degree of metabolic modification of yeast can be controlled by pMFc. Otherwise, using human breast cancer cells, it has found that the electron transport polymer was significantly useful as a cancer cell-selective growth inhibition.
|
Academic Significance and Societal Importance of the Research Achievements |
生物界に存在する高効率な化学反応による物質変換、エネルギー産生に着目して、その基本となる細胞内の電子移動反応を制御する新規ポリマー材料の創発に関連する研究を展開し、酵母による物質生産効率の向上や、光合成に関連したエネルギー産生、癌細胞の細胞死を誘引、細胞機能変換を実現した。これは人工材料の設計により医療のみならず、エネルギー・環境という世界規模での問題を解消する研究に挑戦した画期的な基盤研究と位置付けられる。
|
Report
(4 results)
Research Products
(21 results)