Project/Area Number |
17H02107
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Medical systems
|
Research Institution | Tokyo University of Agriculture and Technology |
Principal Investigator |
Masuda Kohji 東京農工大学, 工学(系)研究科(研究院), 教授 (60283420)
|
Co-Investigator(Kenkyū-buntansha) |
丸山 一雄 帝京大学, 薬学部, 特任教授 (30130040)
鈴木 亮 帝京大学, 薬学部, 教授 (90384784)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥18,070,000 (Direct Cost: ¥13,900,000、Indirect Cost: ¥4,170,000)
Fiscal Year 2019: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2018: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2017: ¥11,570,000 (Direct Cost: ¥8,900,000、Indirect Cost: ¥2,670,000)
|
Keywords | 音響放射力 / アレイトランスデューサ / 超音波 / 微小気泡 / 治療用細胞 / リンパ球 / 超音波音場 / トランスデューサ / Tリンパ球 / CD8陽性Tリンパ球 / 多分岐型流路 / 凝集体 / フレキシブルアレイ |
Outline of Final Research Achievements |
In order to apply to immune cell therapy, we have developed a technique for forming aggregates with bubble-surrounded cells (BSCs) and delivering cells in the bloodstream using acoustic radiation force. It is necessary to control the BSCs by irradiating the ultrasound field from various directions to aggregates in the fluid, focusing on the experimental results. With respect to damage to cells, not only the energy of ultrasound irradiation, but also sound pressure was found to be dominant. We constructed a theoretical model to trap aggregates on blood wall by ultrasound and compared it with the experimental results. Furthermore, it was displayed priority of the installation position of the sound source on the body surface. Using information on the surface of the actual human body, we have developed a therapy-planning software for the contact range of the sound source.
|
Academic Significance and Societal Importance of the Research Achievements |
治療のために特別に調製した細胞、例えば活性化したNK細胞を患者に注入する治療法では、患者に対する副作用が少ないため、外科手術・化学療法・放射線療法に次ぐガン治療として注目されている。しかし血行性に輸注された細胞は基本的に全身に拡散するため、固形ガンなどの標的部位への集積効率には限界があることが問題である。そのため、本研究によって目的の細胞を標的部位に能動的に送達することができれば、注入量に対する効率を飛躍的に向上させることが期待できる。
|