Project/Area Number |
17H02109
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Medical systems
|
Research Institution | Nagaoka University of Technology |
Principal Investigator |
WADAMORI Naoki 長岡技術科学大学, 工学研究科, 助教 (60303179)
|
Co-Investigator(Kenkyū-buntansha) |
中川 匡弘 長岡技術科学大学, 工学研究科, 教授 (60155687)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥13,390,000 (Direct Cost: ¥10,300,000、Indirect Cost: ¥3,090,000)
Fiscal Year 2019: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2018: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2017: ¥6,890,000 (Direct Cost: ¥5,300,000、Indirect Cost: ¥1,590,000)
|
Keywords | 光音響分光法 / 内因性ガス / 内視鏡 / 医療・福祉 |
Outline of Final Research Achievements |
Analysis of endogenous gases such as gastric and intestinal gases potentially offers a fast, convenient and noninvasive diagnostic method for a variety of diseases. For this purpose, a miniature photoacoustic system has been developed to perform gas sampling using a smart endoscope. Endogenous gases are generally mixtures composed of several of thousands of possible volatile organic compounds. An array of modulated laser diodes and an array controller were developed and coupled via an optical fiber bundle to a photoacoustic sensor head because interference between compounds can be reduced by using multiple laser wavelengths. A mixture of CO2 and N2 gases was measured using a dual-wavelength optical source to detect the compounds contained therein. The two resonance frequencies for the operating wavelengths were approximately the same. The photoacoustic system was found to have a 1% detection limit for CO2, which is too high for practical use.
|
Academic Significance and Societal Importance of the Research Achievements |
本装置の性能の向上を図ることができれば、視覚情報だけでなく、嗅覚情報が加わることとなり、診断精度が向上すると考えられる。以前より、重篤な糖尿病患者、腎不全患者や肝臓疾患など、病気とニオイ成分との関係はよく知られている。光音響分光法は、照射光波長を測定対象の吸収波長に合致させることにより、さまざまな原因物質に応用可能であり、多くの疾病を非侵襲に診断できる可能性がある。 また、現時点での性能でも、ニオイの測定は、各種食品の品質管理、鮮度の測定、工場排気臭や環境モニタリングなどの応用面のみならず、ニオイの測定による物理化学反応の追跡などの基礎研究に至るまでの広範囲な応用の可能性を有している。
|