• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A new approach to time-series econometric analysis with point processes

Research Project

Project/Area Number 17H02513
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Economic statistics
Research InstitutionMeiji University

Principal Investigator

Kunitomo Naoto  明治大学, 政治経済学部, 特任教授 (10153313)

Co-Investigator(Kenkyū-buntansha) 大屋 幸輔  大阪大学, 経済学研究科, 教授 (20233281)
佐藤 整尚  東京大学, 大学院経済学研究科(経済学部), 准教授 (60280525)
栗栖 大輔  東京工業大学, 工学院, 助教 (70825835)
Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥12,220,000 (Direct Cost: ¥9,400,000、Indirect Cost: ¥2,820,000)
Fiscal Year 2020: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2019: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2018: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2017: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Keywords時系列分析 / 非定常時系列 / 点過程 / マクロ時系列 / 高頻度金融時系列 / Levy過程 / SIMLフィルタリング / 時系列計量分析 / 点過程アプローチ / マクロ経済時系列 / 高頻度金融データ / 時系列フィルタリング / 統計的時系列分析の理論と応用 / マクロ経済データと金融データ / 点過程(ジャンプ過程)と確率過程 / 計量経済学 / 時系列解析 / 点確率過程
Outline of Final Research Achievements

This research project has studied important issues of econometric methods based on stochastic point processes. It investigated some statistical modelling of multivariate financial time series and macro-economic time, which has been then applied to measure economic risk analysis including financial risk and insurance risk We have studied various scientific and systematic aspects of point processes and non-stationary multivariate economic time series. The project members have presented research results at various international as well as domestic academic meetings and published some books and many academic papers.
We have developed a new filtering method called the SIML (separating information maximum likelihood) method for high frequency financial data and multivariate macro- economic data. We have shown that the new method gives a new way to handle the filtering problem of macro-economic time series and also a way to find some hidden factors in high frequency financial time series

Academic Significance and Societal Importance of the Research Achievements

これまで知られていた計量分析法では社会や経済で時々起きる現象の分析は十分とは言えず、この研究プロジェクトにより点過程アプローチの重要性と限界が明らかになったことは今後のさらなる研究の基礎となることが期待される。また近年の社会・経済では事前には予想できない時々しか起きない大きな変動の理解がすすみ、対処法の設計に資すると考えられる。
なお報告書に研究プロジェクト参加者の佐藤の応用例「コロナ感染の逐次予測法」について説明した。

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • Research Products

    (33 results)

All 2021 2020 2019 2018 2017

All Journal Article (16 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 13 results,  Open Access: 8 results) Presentation (11 results) (of which Int'l Joint Research: 8 results,  Invited: 6 results) Book (5 results) Funded Workshop (1 results)

  • [Journal Article] Detecting factors of quadratic variation in the presence of market microstructure noise2021

    • Author(s)
      Naoto Kunitomo, Daisuke Kurisu
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: - Issue: 1 Pages: 601-641

    • DOI

      10.1007/s42081-020-00104-w

    • NAID

      210000178972

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A robust-filtering method for noisy non-stationary multivariate time series with econometric applications2021

    • Author(s)
      Naoto Kunitomo and Seisho Sato
    • Journal Title

      Japanese Journal of Statistics and Data Science(JJSD)

      Volume: forthcoming Issue: 1 Pages: 373-410

    • DOI

      10.1007/s42081-020-00102-y

    • NAID

      210000167024

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] On the uniform convergence of deconvolution estimators from repeated measurements.2021

    • Author(s)
      Daisuke Kurisu, Taisuke OTsu
    • Journal Title

      Econometric Theory

      Volume: - Issue: 1 Pages: 172-193

    • DOI

      10.1017/s0266466620000572

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Inference on distribution functions under measurement error2020

    • Author(s)
      Adusumilli Karun, Kurisu Daisuke, Otsu Taisuke, Whang Yoon-Jae
    • Journal Title

      Journal of Econometrics

      Volume: 215 Issue: 1 Pages: 131-164

    • DOI

      10.1016/j.jeconom.2019.09.002

    • Related Report
      2020 Annual Research Report 2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] 市場価格急変予兆の検出について2020

    • Author(s)
      大屋幸輔
    • Journal Title

      先物・オプションレポート

      Volume: 32-10 Pages: 1-6

    • Related Report
      2020 Annual Research Report
  • [Journal Article] 市場価格急変予兆の検出について:応用編2020

    • Author(s)
      大屋幸輔
    • Journal Title

      先物・オプションレポート

      Volume: 32-11 Pages: 1-5

    • Related Report
      2020 Annual Research Report
  • [Journal Article] Comparing estimation methods of non-stationary errors-in-variables models2020

    • Author(s)
      Naoto Kunitomo, Naoki Awaya and Daisuke Kurisu
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: ー Issue: 1 Pages: 73-101

    • DOI

      10.1007/s42081-019-00051-1

    • NAID

      210000164419

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Bootstrap confidence bands for spectral estimation of Levy densities under high-frequency observations2020

    • Author(s)
      Kato, K. and Kurisu, D.
    • Journal Title

      Stochastic Processes and their Applications

      Volume: ー Issue: 3 Pages: 1159-1205

    • DOI

      10.1016/j.spa.2019.04.012

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] インプライド・モーメントがもたらす情報:VIXは何を伝えているのか2019

    • Author(s)
      大屋幸輔
    • Journal Title

      『現代経済学の潮流 2019』,日本経済学会

      Volume: 2019 Pages: 99-125

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Term Structure Models During the Global Financial Crisis: A Parsimonious Text Mining Approach2019

    • Author(s)
      Nishimura, K.G., Sato, S. & Takahashi, A
    • Journal Title

      Asia-Pasific Financial Markets

      Volume: 297-337 Pages: 297-337

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On nonparametric inference for spatial regression models under domain expanding and infill asymptotics2019

    • Author(s)
      Kurisu, D
    • Journal Title

      Statistics and Probability Letters

      Volume: 154 Pages: 108543-108543

    • DOI

      10.1016/j.spl.2019.06.019

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 周波数分解された分散リスク・プレミアムの予測力2019

    • Author(s)
      大屋幸輔
    • Journal Title

      先物・オプションレポート

      Volume: Vol.31 No. 1 Pages: 1-5

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Simultaneous multivariate Hawkes-type point processes and their application to financial markets2018

    • Author(s)
      Kunitomo Naoto、Kurisu Daisuke、Awaya Naoki
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: 1 Issue: 2 Pages: 297-332

    • DOI

      10.1007/s42081-018-0017-3

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Effects of Jumps and Small Noises in High-Frequency Financial Econometrics2017

    • Author(s)
      Naoto, Kunitomo
    • Journal Title

      Asia-Pacific Financial Markets

      Volume: 24 Issue: 1 Pages: 39-73

    • DOI

      10.1007/s10690-017-9223-4

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 多次元ホークス型モデルによるマクロ金融市場の因果性分析2017

    • Author(s)
      国友直人・江原斐夫・栗栖大輔
    • Journal Title

      日本統計学会誌

      Volume: 46-2 Pages: 137-171

    • NAID

      130006243083

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] ボラティリティ・スプレッド2017

    • Author(s)
      大屋幸輔
    • Journal Title

      『先物・オプションレポート』大阪取引所

      Volume: 29-12 Pages: 1-5

    • Related Report
      2017 Annual Research Report
    • Open Access
  • [Presentation] Spatially dependent wild bootstrap for high-dimensional spatial data2021

    • Author(s)
      Daisuke Kurisu
    • Organizer
      University of Alberta Statistics Seminar
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] ノイズを含む多次元非定常時系列における新しいフィ ルタリング法と応用2020

    • Author(s)
      国友直人
    • Organizer
      統計関連学会連合大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Wild bootstrap for spatio-temporal data2020

    • Author(s)
      Daisuke Kurisu
    • Organizer
      CMStatistics 2020
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Estimation of smoothly time varying coefficient partial adjustment model2019

    • Author(s)
      Kosuke Oya
    • Organizer
      The 3rd International Conference on Econometrics and Statistics (EcoSta2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Term Structure Models During the Global Financial Crisis: A Parsimonious Text Mining Approach2019

    • Author(s)
      Seisho Sato
    • Organizer
      ICMMA
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] インプライド・モーメントがもたらす情報:VIXは何を伝えているのか2018

    • Author(s)
      大屋幸輔
    • Organizer
      日本経済学会2018年度秋季大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Detecting Numbers Factors in Non-Stationary Errors-in-Variables Models2018

    • Author(s)
      国友直人
    • Organizer
      科学研究プロジェクト「新しい時系列計量分析の理論と応用」
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 不等間隔観測の下でのノンパラメトリック空間回帰モデルに対する統計的推測2018

    • Author(s)
      栗栖大輔
    • Organizer
      科学研究プロジェクト「新しい時系列計量分析の理論と応用」
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Local SIML Estimation of Some Brownian Functionals2018

    • Author(s)
      佐藤整尚・国友直人
    • Organizer
      科学研究プロジェクト「新しい時系列計量分析の理論と応用」
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] High-frequency Financial Data and G-Causality Analysis2017

    • Author(s)
      Kosuke Oya
    • Organizer
      The 1st International Conference on Econometrics and Statistics
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] GDPの見方について2017

    • Author(s)
      佐藤整尚
    • Organizer
      研究集会「新しい時系列計量分析の理論と応用」
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Book] 極値現象の統計分析 ―裾の重い分布のモデリング―2021

    • Author(s)
      国友直人 ・栗栖大輔
    • Total Pages
      413
    • Publisher
      朝倉書店
    • ISBN
      9784254122565
    • Related Report
      2020 Annual Research Report
  • [Book] データ分析のための統計学入門2021

    • Author(s)
      国友直人, 小暮厚之, 吉田靖
    • Total Pages
      426
    • Publisher
      日本統計協会
    • ISBN
      9784822341053
    • Related Report
      2020 Annual Research Report
  • [Book] 統計と日本社会:データサイエンス時代の展開2019

    • Author(s)
      国友直人、山本拓
    • Total Pages
      293
    • Publisher
      東京大学出版会
    • ISBN
      4130434012
    • Related Report
      2018 Annual Research Report
  • [Book] Separating Information Maximum Likelihood Method for High-Frequency Financial Data2018

    • Author(s)
      Naoto Kunitomo, Seisho Sato Daisuke Kurisu
    • Total Pages
      114
    • Publisher
      Springer
    • ISBN
      9784431559283
    • Related Report
      2018 Annual Research Report
  • [Book] Characterizing Interdependencies of Multiple Time Series: Theory and Applications2017

    • Author(s)
      Yuzo Hosoya, Kosuke Oya, Taro Takimoto, Ryo Kinoshita
    • Total Pages
      133
    • Publisher
      Springer
    • ISBN
      9789811064357
    • Related Report
      2017 Annual Research Report
  • [Funded Workshop] データサイエンス・松本キャンプ2018

    • Related Report
      2018 Annual Research Report

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi