Project/Area Number |
17H02745
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Nanomaterials engineering
|
Research Institution | Osaka University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
仁科 勇太 岡山大学, 異分野融合先端研究コア, 研究教授 (50585940)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥18,330,000 (Direct Cost: ¥14,100,000、Indirect Cost: ¥4,230,000)
Fiscal Year 2019: ¥5,330,000 (Direct Cost: ¥4,100,000、Indirect Cost: ¥1,230,000)
Fiscal Year 2018: ¥5,720,000 (Direct Cost: ¥4,400,000、Indirect Cost: ¥1,320,000)
Fiscal Year 2017: ¥7,280,000 (Direct Cost: ¥5,600,000、Indirect Cost: ¥1,680,000)
|
Keywords | グラフェン / 酸化グラフェン / ナノ炭素材料 / 超高温プロセス / 化学気相成長法 / 乱層構造 / キャリア輸送 / 高空隙 / 電気化学電極 / キャリア輸送特性 / ナノ材料 / 結晶工学 / 固体物性 / 薄膜物性 / ナノカーボン材料 / 欠陥 / ラマン分光法 / セルロースナノファイバー / 層間相互作用 |
Outline of Final Research Achievements |
We have developed a thermal process for synthesizing low-defect/turbostratic/multilayer graphene thin films, which are nanocarbon structures with excellent two-dimensional physical properties comparable to single-layer graphene, by a thermal process at ultrahigh temperature under reactive atmosphere. The physical superiority originated from the turbostratic structure was verified from optical and electrical properties. Turbostratic multilayer graphene was synthesized by direct growth on template graphene, in addition to use graphene oxide as starting material. The interaction between graphene layers was controlled by inserting cellulose nanofibers and nanodiamonds between the layers, and it is effective for revealing the monolayer-like properties. Carrier transport properties such as mobility and conductivity were significantly improved, owing to the monolayer-like property caused from the turbostratic stacking and shielding of environmental effects by multilayer structure.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で得られたナノ炭素構造体である乱層グラフェン薄膜は、多層でありながら単層と同様の電子構造を持ち、本研究でもその一端が確認されたように、単層グラフェンの優れた特性の維持が期待される。すなわち、本技術は、グラフェンを実用材料として社会導入する場合の障害のひとつである多層化による電子物性の劣化という課題を解決するための基盤となるものである。本研究を発展させ、欠陥密度のいっそうの低減やドメインサイズ拡大、さらには3次元積層化を進めることにより、グラフェンを大面積フレキシブルエレクトロニクス材料や電極材料など様々な応用技術への展開が可能となる。
|