Project/Area Number |
17H02767
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Applied materials
|
Research Institution | Osaka Prefecture University |
Principal Investigator |
Togawa Yoshihiko 大阪府立大学, 工学(系)研究科(研究院), 教授 (00415241)
|
Co-Investigator(Kenkyū-buntansha) |
高阪 勇輔 大阪府立大学, 工学(系)研究科(研究院), 助教 (60406832)
岸根 順一郎 放送大学, 教養学部, 教授 (80290906)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥18,070,000 (Direct Cost: ¥13,900,000、Indirect Cost: ¥4,170,000)
Fiscal Year 2019: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2018: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2017: ¥10,400,000 (Direct Cost: ¥8,000,000、Indirect Cost: ¥2,400,000)
|
Keywords | キラル磁性 / 位相コヒーレンス / 集団ダイナミクス / 巨大スピン応答 / 磁性 |
Outline of Final Research Achievements |
We have generated fundamental knowledge on stable control and manipulation of chiral magnetic order and consequent emergence of material functionality, which are unique to chiral spin soliton lattice stabilized in monoaxial chiral magnetic crystals. Many discoveries were made in this study, as exemplified by a successful growth of enantiopure chiral magnetic crystals in material synthesis experiments. As for physical properties measurements, the representative works were found on a clarification of surface barrier mechanism as well as many discoveries of material functionality arising from a successful control of collective dynamics and electrical transport properties. An exploration of chirality coupled system was inspired by thorough theoretical considerations of optical chirality in chiral materials. Based on these findings, we have advanced systemizing guiding principles on chiral magnetism and successfully opened up a novel route toward device applications using chiral magnetism.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では「キラル磁性における位相コヒーレンス」という独自の研究アイディアに基づき、物質における対称性の破れからキラル物質機能の発現への道筋を示し、次世代磁気電子デバイスの開発に向けたキラル磁性応用の基盤学理を構築することに成功した。この研究成果は「対称性と機能の相関」という物質科学の根幹を成す問題の解明に貢献したと学術的に位置づけられる。磁性分野を含めた広範な物質科学におけるキラル物質の重要性を明らかにしたという点で物質機能の開拓指針にパラダイムシフトをもたらすと期待される。
|