• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Towards the theory of Algbebraic Symplectic Geometry

Research Project

Project/Area Number 17H02833
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKyoto University

Principal Investigator

Namikawa Yoshinori  京都大学, 数理解析研究所, 教授 (80228080)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥8,190,000 (Direct Cost: ¥6,300,000、Indirect Cost: ¥1,890,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2019: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2017: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Keywordsシンプレクティック代数多様体 / 錐的シンプレクティック多様体 / ポアソン変形 / 双有理幾何 / シンプレクティック特異点解消 / べき零軌道 / シンプレクティック特異点 / ベキ零軌道 / 超トーリック多様体 / シンプレクティック双対性 / 複素シンプレクティック多様体
Outline of Final Research Achievements

Complex algebraic varieties with holomorphic symplectic forms play important roles in algebraic geometry, geometric representation theory and mathematical physics. It is natural to treat those objects admitting singularities. In our research, we have studied "conical symplectic varieties". As concrete results, we first characterized finite coverings of nilpotent orbit closures of a complex semisimple Lie algebra among conical symplectic varieties. Next, we gave an algorithm for constructing a good partial resolution (so called a Q-factorial terminalization) of a conical symplectic variety associated with the universal covering of a nilpotent orbit of a classical Lie algebra. We also counted the number of different Q-factorial terminalizations.

Academic Significance and Societal Importance of the Research Achievements

本研究の対象である, 錐的シンプレクティック多様体は, 代数幾何と幾何学的表現論の結びつける働きをするものであるが, 代数幾何からアプローチした研究は, ユニークなものである. ここで得られた成果は, 最近, 幾何学的表現論の研究者たちに多く使われるようになった. たとえば, シンプレクティック双対性とよばれる現象が多くの研究者の注目を浴びているが, 研究代表者のおこなった研究は, その中でも重要な働きをしている.

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • Research Products

    (21 results)

All 2021 2020 2019 2018 2017

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (18 results) (of which Int'l Joint Research: 14 results,  Invited: 18 results) Book (1 results)

  • [Journal Article] A characterization of nilpotent orbit closures among symplectic singularities2018

    • Author(s)
      Y. Namikawa
    • Journal Title

      Math. Ann

      Volume: 370 Issue: 1-2 Pages: 811-818

    • DOI

      10.1007/s00208-017-1572-9

    • Related Report
      2018 Annual Research Report 2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Fundamental groups of symplectic singularities,2017

    • Author(s)
      Y. Namikawa
    • Journal Title

      Adv. Stud. Pure Math.

      Volume: 74 Pages: 321-334

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Presentation] べき零軌道の普遍被覆と双有理幾何2021

    • Author(s)
      並河良典
    • Organizer
      代数.幾何.解析ワークショップ(鹿児島)
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] べき零軌道の普遍被覆と双有理幾何2020

    • Author(s)
      並河良典
    • Organizer
      代数学シンポジウム
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Universal coverings of nilpotent orbits and birational geometry2020

    • Author(s)
      並河良典
    • Organizer
      京大表現論セミナー
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Birational geometry for the covering of a nilpotent orbit closure2020

    • Author(s)
      並河良典
    • Organizer
      東大京大合同代数幾何セミナー
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Symplectic singularities and nilpotent orbits2019

    • Author(s)
      Yoshinori Namikawa
    • Organizer
      Symplectic Representation Theory, CIRM, Marseille, France
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Symplectic singularities and nilpotent orbits2019

    • Author(s)
      Yoshinori Namikawa
    • Organizer
      Japanese-European Symposium on symplectic varieties and moduli spaces, ETH, Zurich, Switzerland
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Birational geometry for the covering of a nilpotent orbit closure2019

    • Author(s)
      Yoshinori Namikawa
    • Organizer
      Lecture Series in Algebraic Geometry, -Group action and Symplectic algebraic geometry, Morning Center of Mathematics, Chinese Academy of Science, Peking, China
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Introduction to Poisson geometry for algebraic geometers2019

    • Author(s)
      Y, Namikawa
    • Organizer
      Winter school on Poisson structures in Algebraic Geometry, Busan, Korea
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Symplectic singularities and nilpotent orbits2019

    • Author(s)
      Y, Namikawa
    • Organizer
      Symplectic Representation Theory, Luminy, France
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Symplectic singularities and nilpotent orbits2018

    • Author(s)
      Y, Namikawa
    • Organizer
      Complex Geometry and Lie groups, Florence, Italy
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Symplectic singularities and nilpotent orbits2018

    • Author(s)
      Y, Namikawa
    • Organizer
      International Conference on geometric representation theory and symplectic varieties, Univ. of Notre Dame, USA
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Poisson deformations and birational geometry2018

    • Author(s)
      Y, Namikawa
    • Organizer
      Poisson 2018 -International Conference on Poisson geometry, Fields Institute, Canada
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Symplectic singularities and nilpotent orbits2018

    • Author(s)
      Y, Namikawa
    • Organizer
      Kinosaki Algebraic Geometry Conference 2018, Kinosaki, Japan
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Towards the classification of symplectic singularities2018

    • Author(s)
      Y. Namikawa
    • Organizer
      Higher dimensional algebraic geometry, Tokyo
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Towards the classification of symplectic singularities2017

    • Author(s)
      Y. Namikawa
    • Organizer
      Japanese-European Symposium on symplectic varieties and moduli spaces, Italy
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Towards the classification of symplectic singularities2017

    • Author(s)
      Y. Namikawa
    • Organizer
      Algebraic Geometry and Symplectic Geometry at crossroads, Kyoto
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Poisson deformations and birational geometry2017

    • Author(s)
      Y. Namikawa
    • Organizer
      Master Lectures -Quotients, Stability and Invariants-, China
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Towards the classification of symplectic singularities2017

    • Author(s)
      Y. Namikawa
    • Organizer
      Master Lectures -the Legacy of Carl Friedrich Gauss-, China
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Book] 複素代数多様体 -正則シンプレクティック構造からの視点-2021

    • Author(s)
      並河良典
    • Total Pages
      168
    • Publisher
      サイエンス社
    • ISBN
      9784781915036
    • Related Report
      2020 Annual Research Report

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi