• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Singularities of surfaces and hypersurfaces in Lorentzian space forms

Research Project

Project/Area Number 17H02839
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionTokyo Institute of Technology

Principal Investigator

Yamada Kotaro  東京工業大学, 理学院, 教授 (10221657)

Co-Investigator(Kenkyū-buntansha) 梅原 雅顕  東京工業大学, 情報理工学院, 教授 (90193945)
Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥17,550,000 (Direct Cost: ¥13,500,000、Indirect Cost: ¥4,050,000)
Fiscal Year 2021: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2020: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2019: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2018: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2017: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Keywords微分幾何学 / ローレンツ多様体 / 直線定理 / 解析的拡張 / 曲面・超曲面 / 退化点 / 解析的延長 / 曲面・調教k面 / ローレンツ空間型 / 零平均曲率曲面 / 特異点 / 平均曲率一定鏡面 / 微分幾何一般(含種々の幾何構造、離散幾何) / ローレンツ幾何 / 平均曲率一定曲面
Outline of Final Research Achievements

The line theorem for a class of surfaces containing zero mean curvature surfaces in Minkowski 3-space, which states that such a surface contains a light-like line if it contains light-like point, is generalized for hypersurfaces in Lorenzian manifolds. As applications, an extension of the Bernstein-type theorem, and a classification of light-like hypersurfaces are obatained.
Under a formulation on analytic extensions of surfaces, the analytic extensions of catenoids in de Sitter 3-space are determined, and proved that they have no further extensions.
Number of isomety class of surfaces having a given space curve as their cuspidal edges, and number of curved paper folding having a given curve as their creases, are determined.

Academic Significance and Societal Importance of the Research Achievements

ローレンツ多様体の因果特性が変化する超曲面はさまざまな例が知られている.また,そのうち解析的延長も持つものも多く知られているが,それらを一般的な視点から記述し,延長不可能性について論じた研究は少なく,学術的に重要なものである.また,これらの対象は自然現象の記述として現れることが多く,他分野への影響も期待される.

Report

(6 results)
  • 2022 Final Research Report ( PDF )
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • Research Products

    (13 results)

All 2022 2021 2020 2019 2017 Other

All Int'l Joint Research (2 results) Journal Article (11 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 11 results,  Open Access: 7 results)

  • [Int'l Joint Research] Korea University(韓国)

    • Related Report
      2017 Annual Research Report
  • [Int'l Joint Research] TU Wien(オーストラリア)

    • Related Report
      2017 Annual Research Report
  • [Journal Article] Analytic extensions of constant mean curvature one geometric catenoids in de Sitter 3-space2022

    • Author(s)
      Shoichi Fujimori, Yu Kawakami, Masatoshi Kokubu, Wayne Rossman, Masaaki Umehara, Kotaro Yamada and Seong-Deog Yang
    • Journal Title

      Differential Geometry and Its Applications

      Volume: 84 Pages: 101924-101924

    • DOI

      10.1016/j.difgeo.2022.101924

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Hypersurfaces with light-like points in a Lorentzian manifold II2021

    • Author(s)
      Umehara Masaaki、Yamada Kotaro
    • Journal Title

      Kodai Mathematical Journal

      Volume: 44 Issue: 1 Pages: 69-76

    • DOI

      10.2996/kmj44104

    • NAID

      130008000449

    • ISSN
      0386-5991, 1881-5472
    • Year and Date
      2021-03-18
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Analytic extension of exceptional constant mean curvature one catenoids in de Sitter 3-space.2020

    • Author(s)
      Shoichi Fujimori, Yu Kawakami, Masatoshi Kokubu, Wayne Rossman, Masaaki Umehara and Kotaro Yamada
    • Journal Title

      Mathematical Journal of Okayama University

      Volume: 62 Pages: 179-195

    • NAID

      120006778830

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Improvement of the Bernstein-type theorem for space-like zero mean curvature graphs in Lorentz-Minkowski space using fluid mechanical duality2020

    • Author(s)
      Akamine S.、Umehara M.、Yamada K.
    • Journal Title

      Proceedings of the American Mathematical Society, Series B

      Volume: 7 Issue: 2 Pages: 17-27

    • DOI

      10.1090/bproc/44

    • Related Report
      2020 Annual Research Report 2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Curved foldings with common creases and crease patterns2020

    • Author(s)
      Honda Atsufumi、Naokawa Kosuke、Saji Kentaro、Umehara Masaaki、Yamada Kotaro
    • Journal Title

      Advances in Applied Mathematics

      Volume: 121 Pages: 102083-102083

    • DOI

      10.1016/j.aam.2020.102083

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Analytic extension of exceptional constant mean curvature one catenoids in de Sitter 3-space2020

    • Author(s)
      Fujiori S., Kawakami, Y., Kokubu, M., Rossman, W., Umehara M., Yamada, K.
    • Journal Title

      Mathematical Journal of Okayama University

      Volume: 62 Pages: 179-195

    • NAID

      120006778830

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Space-like maximal surfaces containing entire null lines in Lorentz-Minkowski 3-space2019

    • Author(s)
      Akamine Shintaro、Umehara Masaaki、Yamada Kotaro
    • Journal Title

      Proceedings of the Japan Academy, Series A, Mathematical Sciences

      Volume: 95 Issue: 9 Pages: 97-102

    • DOI

      10.3792/pjaa.95.97

    • NAID

      40022077001

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Isometric realization of cross caps as formal power series and its applications2019

    • Author(s)
      Honda, A., Naokawa, K., Umehara, M., Yamada, K.
    • Journal Title

      Hokkaido Mathematical Journal

      Volume: 48 Pages: 1-44

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Hypersurfaces with light-like points in a Lorentzian manifold2019

    • Author(s)
      M. Umehara, K. Yamada
    • Journal Title

      Journal of Goemetric Analysis

      Volume: 印刷中 Issue: 4 Pages: 1-33

    • DOI

      10.1007/s12220-018-00118-7

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Quadrics and Scherk towers2017

    • Author(s)
      Fujimori S.、Hertrich-Jeromin U.、Kokubu M.、Umehara M.、Yamada K.
    • Journal Title

      Monatshefte f?r Mathematik

      Volume: - Issue: 2 Pages: 249-279

    • DOI

      10.1007/s00605-017-1075-5

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Surfaces With Light-Like Points In Lorentz-Minkowski 3-Space With Applications2017

    • Author(s)
      Masaaki Umehara and Kotaro Yamada
    • Journal Title

      Springer Proceedings in Mathematics & Statistics

      Volume: 211 Pages: 253-273

    • DOI

      10.1007/978-3-319-66290-9_14

    • ISBN
      9783319662893, 9783319662909
    • Related Report
      2017 Annual Research Report
    • Peer Reviewed

URL: 

Published: 2017-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi