• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Rigidity of non-isometric actions of discrete groups and non-linear spectral gap

Research Project

Project/Area Number 17H02840
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionNagoya University

Principal Investigator

Nayatani Shin  名古屋大学, 多元数理科学研究科, 教授 (70222180)

Co-Investigator(Kenkyū-buntansha) 井関 裕靖  慶應義塾大学, 理工学部(矢上), 教授 (90244409)
Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥17,290,000 (Direct Cost: ¥13,300,000、Indirect Cost: ¥3,990,000)
Fiscal Year 2021: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2020: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2019: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2018: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2017: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Keywordsスペクトルギャップ最大化 / 最適埋め込み / 離散群の剛性 / 球面内の極小曲面 / ラプラシアン第1固有値最大化 / 多様体の最適埋め込み / アフィン等長作用 / 離散群の超剛性 / 非等長的作用 / (非)線形スペクトルギャップ / グラフの埋め込み不変量 / 極小曲面 / グラフの最適埋め込み / 球面内の極小閉曲面 / ランダム群 / アフィン作用 / 非線形スペクトルギャップ / スペクトルギャップ / 高次元多面体
Outline of Final Research Achievements

We studied the optimization problems concerning embeddings into Euclidean spaces and the linear spectral gap of a finite graph and were able to find optimal solutions for a distance-regular graph. We studied the problem of finding an edge-length function maximizing the linear spectral gap and proved a Nadirashvili type theorem. We studied a new optimization problem concerning embeddings and the linear spectral gap of a manifold. We presented some examples where the problems can be solved and proved a Nadirashvili type theorem. We showed that a discrete equivariant harmonic map form a finitely generated group equipped with a random walk induces a boundary map under appropriate assumptions.

Academic Significance and Societal Importance of the Research Achievements

本研究は, ラプラシアン第1固有値のように, それ自身変分問題の最適値であるものをリーマン計量をすべて動かしてさらに最大化するという, 高次の変分問題を扱っており, 数学研究の新たな発展に関わるものと考えている. 新たにNash等長埋め込みと関連する双対最適化問題を設定したことも意義があろう. 離散と連続にまたがる研究であり, 材料科学への示唆も期待できよう.

Report

(6 results)
  • 2022 Final Research Report ( PDF )
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • Research Products

    (24 results)

All 2022 2021 2020 2019 2018 2017

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (19 results) (of which Int'l Joint Research: 5 results,  Invited: 13 results) Funded Workshop (3 results)

  • [Journal Article] Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian2019

    • Author(s)
      Shin Nayatani, Toshihiro Shoda
    • Journal Title

      Comptes Rendus Mathematique, Academie des Sciences, Paris

      Volume: 357 Pages: 84-98

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Fixed-point property for affine actions on a Hilbert space2017

    • Author(s)
      Shin Nayatani
    • Journal Title

      RIMS Kokyuroku Bessatsu

      Volume: B66 Pages: 115-131

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Presentation] First-eigenvalue maximization and embedding optimization2021

    • Author(s)
      納谷信
    • Organizer
      The 3rd Japan-Taiwan Joint Conference on Differential Geometry
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] First-eigenvalue maximization and embedding optimization2021

    • Author(s)
      納谷信
    • Organizer
      第6回日中幾何学研究集会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 有限グラフの埋め込み不変量の最小化と第1固有値の最大化2020

    • Author(s)
      五明工, 納谷信
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Metrics maximizing the first eigenvalue of the Laplacian on a closed surface2019

    • Author(s)
      納谷 信
    • Organizer
      Mathematics Colloquium, University of Warwick
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] ラプラシアンの第1固有値を最大化する閉曲面上の計量について1, 22019

    • Author(s)
      納谷 信
    • Organizer
      Workshop on geometry of networks and related topics in Kagoshima
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Riemannian metrics maximizing the first eigenvalue of the Laplacian on a closed surface2019

    • Author(s)
      納谷 信
    • Organizer
      研究集会「リーマン面に関連する位相幾何学」
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Riemannian metrics maximizing the first eigenvalue of the Laplacian on a closed surface2019

    • Author(s)
      納谷 信
    • Organizer
      The first Geometry Conference for Friendship of Japan and Germany
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 有限グラフの第1固有値の最大化と埋め込み不変量の最小化2019

    • Author(s)
      納谷 信
    • Organizer
      福岡大学微分幾何研究集会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Riemannian metrics maximizing the first eigenvalue of the Laplacian on a closed surface2019

    • Author(s)
      納谷 信
    • Organizer
      研究集会 Geometry and Analysis
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Metrics maximizing the first eigenvalue of the Laplacian on a closed surface and extra eigenfunction (Mini-course)2019

    • Author(s)
      Shin Nayatani
    • Organizer
      UK-Japan Winter School "Variational problems in geometry and mathematical physics"
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 高次元多面体と極小曲面2019

    • Author(s)
      Shin Nayatani
    • Organizer
      高次元多面体勉強会
    • Related Report
      2018 Annual Research Report
  • [Presentation] ラプラシアンの第1固有値を最大化する閉曲面上の計量について2018

    • Author(s)
      Shin Nayatani
    • Organizer
      福島幾何学研究集会2018
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] ラプラシアンの第1固有値の最大化と極小曲面(企画特別講演)2018

    • Author(s)
      Shin Nayatani
    • Organizer
      2018年度秋季総合分科会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Bolza曲面上の三つの計量2018

    • Author(s)
      Shin Nayatani
    • Organizer
      研究集会「Geometry of Riemann surfaces and related topics」
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] ラプラシアンの第1固有値を最大化する閉曲面上の計量について2018

    • Author(s)
      納谷 信
    • Organizer
      研究集会「リーマン幾何と幾何解析」
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] ラプラシアンの第1固有値を最大化する種数2閉曲面上の計量2018

    • Author(s)
      庄田 敏宏、納谷 信
    • Organizer
      日本数学会2018年度年会
    • Related Report
      2017 Annual Research Report
  • [Presentation] Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian2017

    • Author(s)
      Shin nayatani
    • Organizer
      第3回日中幾何学研究集会(The 3rd Japan-China Geometry Conference)
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] ラプラシアンの第1固有値を最大化する閉曲面上の計量について2017

    • Author(s)
      納谷 信
    • Organizer
      福岡大学微分幾何セミナー
    • Related Report
      2017 Annual Research Report
  • [Presentation] Hersch-Yang-Yauの不等式と閉曲面上の第1固有値の最大化について2017

    • Author(s)
      納谷 信
    • Organizer
      Workshop 「Geometric Analysis in Geometry and Topology 2017」
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Funded Workshop] RIMS Review Seminar, Symmetry and Stability in Differential Geometry of Surfaces2022

    • Related Report
      2021 Annual Research Report
  • [Funded Workshop] Rigidity School Nagoya 20182018

    • Related Report
      2018 Annual Research Report
  • [Funded Workshop] Rigidity School Nagoya 20172017

    • Related Report
      2017 Annual Research Report

URL: 

Published: 2017-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi