• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of the covering monopole map and its applications

Research Project

Project/Area Number 17H02841
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKyoto University

Principal Investigator

Kato Tsuyoshi  京都大学, 理学研究科, 教授 (20273427)

Co-Investigator(Kenkyū-buntansha) 上 正明  京都大学, 理学研究科, 教授 (80134443)
Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥14,690,000 (Direct Cost: ¥11,300,000、Indirect Cost: ¥3,390,000)
Fiscal Year 2020: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2019: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2018: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2017: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Keywordsサイバーグ・ウィッテン理論 / 被覆モノポール写像 / 有限伝播性を持つユニタリ作用素 / 非コンパクト空間 / ファイバー束の微分構造 / シンプルタイプ予想 / バウアー・古田理論 / 有限伝播性ユニタリ作用素 / 分類空間 / サイバーグ・ウイッテン理論 / 非可換幾何学 / Bauer-Furuta理論 / K理論 / ファイバー束 / 調和振動子 / 有限伝搬ユニタリ作用素 / 特性類 / Bauer-Fruta理論 / 無限群 / ゲージ理論 / 無限次元Bott周期性
Outline of Final Research Achievements

1. We found out the covering monopole degree for the infinite cyclic covering case. 2. We determined homotopy type of the group of finitely propagated unitary operators. 3. We verified non-existence of complete Riemannian metrics with certain properties on the exotic R^4 by deforming SW moduli spaces on K3 surface. 4. We presented an example of a compact topological fiber bundle whose total space, the fiber and the base are all smoothable but is non-smoothable as a fiber bundle by applying the family version of SW theory. 5. We introduced mod2 version of the simple type conjecture in SW theory and verified it for some classes of smooth 4-manifolds.

Academic Significance and Societal Importance of the Research Achievements

4次元多様体上の微分構造に対して、さまざまなアプローチによる研究を遂行した。特に、族の4次元多様体上の微分構造や、被覆空間上の微分構造に関して、新しい視点を与えた。また、SW不変量の情報を落としたところで、代数トポロジーでこれまで深く研究されてきたホモトピー論を適用することが本格的に可能であることを示したことで、今後の代数トポロジーと微分トポロジーのより深い融合研究への突破口を与えた。

Report

(5 results)
  • 2022 Final Research Report ( PDF )
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • Research Products

    (39 results)

All 2023 2022 2021 2020 2019 2018 Other

All Int'l Joint Research (9 results) Journal Article (13 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 5 results,  Open Access: 2 results) Presentation (9 results) (of which Int'l Joint Research: 6 results,  Invited: 8 results) Remarks (4 results) Funded Workshop (4 results)

  • [Int'l Joint Research] Brandeis University/Vanderbildt University/Pensilvania State University(米国)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Seoul National University(韓国)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Regensburg University(ドイツ)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] ペンシルバニア州立大学(米国)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] 復旦大学/華東師範大学(中国)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] ECNU(中国)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] Fudan University/East China Normal University(中国)

    • Related Report
      2017 Annual Research Report
  • [Int'l Joint Research] Seoul National University(韓国)

    • Related Report
      2017 Annual Research Report
  • [Int'l Joint Research] Vanderbilt University/Pennsylvania State University(米国)

    • Related Report
      2017 Annual Research Report
  • [Journal Article] Upper bounds for virtual dimensions of Seiberg-Witten moduli spaces2023

    • Author(s)
      T.Kato, D.Kishimoto, N.Nakamura, K.Yasui
    • Journal Title

      arXiv

      Volume: 2111(15201) Pages: 1-20

    • Related Report
      2020 Annual Research Report
  • [Journal Article] Homotopy types of spaces of finite propagation unitary operators on Z2022

    • Author(s)
      T.Kato, D.Kishimoto, M.Tsutaya
    • Journal Title

      Homotopy, homology and applications (accepted)

      Volume: 1 Pages: 1-22

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Vector fields on non-compact manifolds2022

    • Author(s)
      T.Kato, D.Kishimoto, M.Tsutaya
    • Journal Title

      arXiv

      Volume: 2211(00512) Pages: 11-11

    • Related Report
      2020 Annual Research Report
  • [Journal Article] A note on exotic families of 4-manifolds2022

    • Author(s)
      T.Kato, H.Konno, N.Nakamura
    • Journal Title

      Proc. AMS (accepted)

      Volume: 1 Pages: 1-11

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A note on exotic families of 4-manifolds2021

    • Author(s)
      T. Kato, N. Nakamura, H. Konno
    • Journal Title

      arXiv

      Volume: 2101.00367 Pages: 1-3

    • Related Report
      2019 Annual Research Report
  • [Journal Article] Homotopy type of the unitary group of the uniform Roe algebra on Z^n2021

    • Author(s)
      Tsuyoshi Kato, Daisuke Kishimoto, Mitsunobu Tsutaya
    • Journal Title

      Journal of Topology and Analysis

      Volume: 1 Pages: 1-15

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Homotopy types of spaces of finite propagation unitary operators on Z2020

    • Author(s)
      T. Kato, D. Kishimoto, M. Tsutaya
    • Journal Title

      arXiv

      Volume: 2007.05787 Pages: 1-22

    • Related Report
      2019 Annual Research Report
  • [Journal Article] Twisted Donaldson invariants2020

    • Author(s)
      T.Kato, H.Sasahira, H.Wang
    • Journal Title

      Mathematical Proceedings of the Cambridge Philosophical Society

      Volume: 1 Pages: 1-52

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] The simple type conjecture for mod 2 Seiberg-Witten invariants2020

    • Author(s)
      T. Kato, N. Nakamura, K. Yasui
    • Journal Title

      Journal of the European Mathematical Society

      Volume: 1 Pages: 1-8

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] L2 harmonic forms and the Seiberg-Witten map on non compact four manifolds2018

    • Author(s)
      Tsuyoshi Kato
    • Journal Title

      arXiv

      Volume: 1807.06741 Pages: 1-26

    • Related Report
      2018 Annual Research Report
  • [Journal Article] Higher Nahm transform in non commutative geometry2018

    • Author(s)
      T. Kato, H. Sasahira and H. Wang
    • Journal Title

      arXiv

      Volume: 1807.08239 Pages: 1-26

    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Journal Article] Induced map on K theory for certain Γ-equivariant maps between Hilbert spaces2018

    • Author(s)
      Tsuyoshi Kato
    • Journal Title

      arXiv

      Volume: 1802.00701 Pages: 1-34

    • Related Report
      2017 Annual Research Report
    • Open Access
  • [Journal Article] Twisted Donaldson invariants2018

    • Author(s)
      Tsuyoshi Kato, Hirofumi Sasahira and Hang Wang
    • Journal Title

      arXiv

      Volume: 1709.08861 Pages: 1-46

    • Related Report
      2017 Annual Research Report
    • Open Access
  • [Presentation] Covering monopole map and aspherical 10/8-conjecture2023

    • Author(s)
      T.Kato
    • Organizer
      Conference `Geometric Analysis' at Universitat Re Germanygensburg,
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Higher Nahm transform in non commutative geometry2018

    • Author(s)
      T. Kato
    • Organizer
      2018 Spring operator algebra program at ECNU
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Higher Nahm transform in non commutative geometry2018

    • Author(s)
      T. Kato
    • Organizer
      Workshop on Noncommutative Geometry and Representation Theory/四川大学
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Twisted Donaldson invariant2018

    • Author(s)
      T. Kato
    • Organizer
      Colloquium talk at University of New South Wales
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Twisted Donaldson invariant2018

    • Author(s)
      t. Kato
    • Organizer
      Gauge Theory and Applications at Regensburg
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Non commutative geometry and gauge theory2018

    • Author(s)
      T. Kato
    • Organizer
      Geometry, Analysis, Groups at Euler Institute, St Petersburg
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Twisted Donaldson invariant2018

    • Author(s)
      Tsuyoshi Kato
    • Organizer
      Non commutative geometry seminar at Pennsilvania State University
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] Twisted Donaldson invariant2018

    • Author(s)
      Tsuyoshi Kato
    • Organizer
      Topology/Geometry lectures at Seoul National Univ
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] Twisted Donaldson invariant2018

    • Author(s)
      Tsuyoshi Kato
    • Organizer
      Gauge theory in Fukuoka
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Remarks] Gauge theory in Kyoto

    • URL

      https://gauge-theory.wixsite.com/kyoto2023

    • Related Report
      2020 Annual Research Report
  • [Remarks] Gauge theory seminar

    • URL

      https://kansai-gauge.squares.net/index.html

    • Related Report
      2020 Annual Research Report
  • [Remarks] グローバル非可換幾何学セミナー;アジア・環太平洋地域

    • URL

      https://globalncgseminar.org/organizers/

    • Related Report
      2020 Annual Research Report
  • [Remarks] 京都大学教育研究活動データベース

    • URL

      https://kyouindb.iimc.kyoto-u.ac.jp/j/cA2iC

    • Related Report
      2018 Annual Research Report
  • [Funded Workshop] Geometry and Everything2019

    • Related Report
      2018 Annual Research Report
  • [Funded Workshop] East Asian conference on Gauge theory and related topics2018

    • Related Report
      2018 Annual Research Report
  • [Funded Workshop] K theory and index theory2018

    • Related Report
      2018 Annual Research Report
  • [Funded Workshop] Gauge theory in Fukuoka2018

    • Related Report
      2017 Annual Research Report

URL: 

Published: 2017-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi