• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on uncertainty of cumulonimbus initiation and development using particle filter

Research Project

Project/Area Number 17H02962
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Meteorology/Physical oceanography/Hydrology
Research InstitutionJapan, Meteorological Research Institute

Principal Investigator

Kawabata Takuya  気象庁気象研究所, 気象観測研究部, 室長 (80354447)

Co-Investigator(Kenkyū-buntansha) 上野 玄太  統計数理研究所, モデリング研究系, 教授 (40370093)
Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥17,290,000 (Direct Cost: ¥13,300,000、Indirect Cost: ¥3,990,000)
Fiscal Year 2020: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2019: ¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2018: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2017: ¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Keywords積乱雲 / 粒子フィルタ / 非ガウス / カオス / データ同化 / 非ガウス性 / 気象学 / 観測演算子 / 確率密度 / 自然現象観測・予測
Outline of Final Research Achievements

There is a hypothesis that the probablities of processes in cumulonimbus-develpments are non-Gaussian and then predictability becomes low. In order to investigate these processes, we developed a partcle filter with a nonhydrostatic model and an osevervation system simulation experiment. Moreover, we adapt the Baysian information criteria to determine Gaussian or non-Gaussian for each probability density. For the result, non-Gaussian processes in cumulonimbus-development was clarified and it is concluded that the source of these nonGaussian was the vertical winds. Furthermore, in oder to improve the filter in nonGaussian cases, we developed a PV inversion method and a data assimilation combined with a machine learning. Since it is important to understant the processes more in detail, th ESVD analysis was developed to investigate the initiation processes of convective phenomena.

Academic Significance and Societal Importance of the Research Achievements

世界で初めて積乱雲を対象とするスケールの粒子フィルタを開発し、積乱雲発達過程における非ガウス性を調査した。気象現象がカオス的振る舞いを持つ事はよく知られているが、積乱雲におけるカオスの発生・発達について調査した研究はこれまでになく、本研究によって初めて明らかにされた。また非ガウス性を客観的に評価する手法を世界で初めて確立した。これらの成果により積乱雲に関わるカオスの研究が進み、その予測可能性の限界が明らかになっていくものと考えられる。

Report

(5 results)
  • 2021 Final Research Report ( PDF )
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • Research Products

    (63 results)

All 2022 2021 2020 2019 2018 2017

All Journal Article (10 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 9 results,  Open Access: 7 results) Presentation (51 results) (of which Int'l Joint Research: 25 results,  Invited: 11 results) Book (2 results)

  • [Journal Article] Nonlinear Data Assimilation by Deep Learning Embedded in an Ensemble Kalman Filter2022

    • Author(s)
      Tsuyuki, T., and R. Tamura,
    • Journal Title

      Journal of the Meteorological Society of Japan. Ser. II

      Volume: 100 Issue: 3 Pages: 533-553

    • DOI

      10.2151/jmsj.2022-027

    • NAID

      130008162465

    • ISSN
      0026-1165, 2186-9057
    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Ensemble‐based singular value decomposition analysis to clarify the causes of heavy rainfall2021

    • Author(s)
      Yokota Sho、Seko Hiromu
    • Journal Title

      Quarterly Journal of the Royal Meteorological Society

      Volume: 147 Issue: 737 Pages: 2244-2263

    • DOI

      10.1002/qj.4020

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Analysis and design of covariance inflation methods using inflation functions. Part 2: adaptive inflation2021

    • Author(s)
      Duc Le、Saito Kazuo、Hotta Daisuke
    • Journal Title

      Quarterly Journal of the Royal Meteorological Society

      Volume: 147 Issue: 737 Pages: 2375-2394

    • DOI

      10.1002/qj.4029

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Non-Gaussian Probability Densities of Convection Initiation and Development Investigated Using a Particle Filter with a Storm-Scale Numerical Weather Prediction Model2020

    • Author(s)
      Kawabata Takuya、Ueno Genta
    • Journal Title

      Monthly Weather Review

      Volume: 148 Issue: 1 Pages: 3-20

    • DOI

      10.1175/mwr-d-18-0367.1

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 粒子フィルタとデータ同化2019

    • Author(s)
      上野玄太
    • Journal Title

      統計数理

      Volume: 67 Pages: 241-253

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Non-Gaussian statistics in global atmospheric dynamics: a study with a 10 240-member ensemble Kalman filter using an intermediate atmospheric general circulation model2019

    • Author(s)
      Kondo Keiichi、Miyoshi Takemasa
    • Journal Title

      Nonlinear Processes in Geophysics

      Volume: 26 Issue: 3 Pages: 211-225

    • DOI

      10.5194/npg-26-211-2019

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Ensemble Kalman Filtering Based on Potential Vorticity for Atmospheric Multi-scale Data Assimilation2019

    • Author(s)
      TSUYUKI Tadashi
    • Journal Title

      Journal of the Meteorological Society of Japan. Ser. II

      Volume: 97 Issue: 6 Pages: 1191-1210

    • DOI

      10.2151/jmsj.2019-067

    • NAID

      130007760859

    • Related Report
      2019 Annual Research Report
  • [Journal Article] Evaluation of Forward Operators for Polarimetric Radars Aiming for Data Assimilation2018

    • Author(s)
      Kawabata, T., H.-S. Bauer, T. Schwitalla, V. Wulfmeyer, and A. Adachi
    • Journal Title

      Journal of the Meteorological Society of Japan. Ser. II

      Volume: 96A Issue: 0 Pages: 157-174

    • DOI

      10.2151/jmsj.2018-017

    • NAID

      130006733553

    • ISSN
      0026-1165, 2186-9057
    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Observational operators for dual polarimetric radars in variational data assimilation systems (PolRad VAR v1.0)2018

    • Author(s)
      Kawabata, T., T. Schwitalla, A. Adachi, H.-S. Bauer, V. Wulfmeyer, N. Nagumo, and H. Yamauch
    • Journal Title

      Geosci. Model Dev.

      Volume: 11 Issue: 6 Pages: 2493-2501

    • DOI

      10.5194/gmd-11-2493-2018

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Data Assimilation2017

    • Author(s)
      上野 玄太
    • Journal Title

      Journal of The Society of Instrument and Control Engineers

      Volume: 56 Issue: 9 Pages: 656-661

    • DOI

      10.11499/sicejl.56.656

    • NAID

      130006083186

    • ISSN
      0453-4662, 1883-8170
    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Presentation] An Adaptive R Estimator with a Storm-Scale Particle Filter2021

    • Author(s)
      Takuya Kawabata and Genta Ueno
    • Organizer
      WCRP-WWRP Symposium on Data Assimilation and Reanalysis
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Ensemble Data Assimilation and Probabilistic Forecast with 1000 Members Coupled with a Hydrological Model Using the Supercomputer “Fugaku” Aiming to the Impact-Based Forecast2021

    • Author(s)
      Takuya KAWABATA, Le Duc, Tsutao Oizumi, Kazuo Saito
    • Organizer
      WCRP-WWRP Symposium on Data Assimilation and Reanalysis
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 極端な豪雨に対する予測研究の現状と今後の展望2021

    • Author(s)
      川畑 拓矢
    • Organizer
      第2回気候変動適応セミナー
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] アンサンブルカルマンフィルタと組み合わせた深層学習によるデータ同化(第3報)2021

    • Author(s)
      露木 義,田村亮祐
    • Organizer
      日本気象学会2021年春季大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Comparison of 4D-EnVAR and 4D-LETKF when running with 1000 ensemble members2021

    • Author(s)
      Duc, L., T. Kawabata, K. Saito, and T. Oizumi
    • Organizer
      WCRP-WWRP Symposium on Data Assimilation and Reanalysis
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 1000-member ensemble forecasts for extreme events: the 2019 typhoon Hagibis and the July 2020 Kyushu heavy rain2021

    • Author(s)
      Duc, L., T. Kawabata, K. Saito, and T. Oizumi
    • Organizer
      WCRP-WWRP Symposium on Data Assimilation and Reanalysis
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Investigation of the potential factors that caused the July 2020 Kyushu heavy rain using a 1000-member ensemble simulation2021

    • Author(s)
      Duc, L., T. Kawabata, K. Saito, and T. Oizumi
    • Organizer
      WCRP-WWRP Symposium on Data Assimilation and Reanalysis
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Flood prediction with the JMA Runoff model and 1000-member weather forecast2021

    • Author(s)
      Tsutao OIZUMI
    • Organizer
      Japan Geoscience Union 2021
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Flood prediction with the JMA Runoff Index model and 1000-member weather forecast2021

    • Author(s)
      Tsutao OIZUMI
    • Organizer
      18th Annual Meeting Asia Oceania Geosciences Society
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 1000 メンバーアンサンブルと流域雨量指数を用いた球磨川の洪水予測2021

    • Author(s)
      大泉 伝
    • Organizer
      日本気象学会春季大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 1000メンバーアンサンブル気象予報の洪水予測への利用2021

    • Author(s)
      大泉 伝
    • Organizer
      日本気象学会2021年度秋季大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Local Particle Filter Implemented with Minor Modifications to the LETKF Code2020

    • Author(s)
      T. Miyoshi, S. Kotsuki, K. Kondo, R. Potthast
    • Organizer
      AMS Annual Meetings
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] NHM-RPFを用いた観測誤差の動的推定?2019

    • Author(s)
      川畑拓矢, 上野玄太
    • Organizer
      非勢力学モデルに関するワークショップ?
    • Related Report
      2019 Annual Research Report
  • [Presentation] Annual Meeting of European Meteorological Society2019

    • Author(s)
      Kawabata, T, G. Ueno
    • Organizer
      What is the source of chaos in MCS??
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] MCSにおけるカオスの起源を探る?2019

    • Author(s)
      川畑拓矢, 上野玄太
    • Organizer
      メソ気象セミナー
    • Related Report
      2019 Annual Research Report
  • [Presentation] Adaptive Estimation of the Observation-error Covariance and its Application to Particle Filtering2019

    • Author(s)
      Ueno, G.
    • Organizer
      AOGS2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 数値予報モデルと粒子フィルタ2019

    • Author(s)
      上野玄太
    • Organizer
      統数研-東北大ワークショップ
    • Related Report
      2019 Annual Research Report
  • [Presentation] ヒストグラムモデルの情報量規準2019

    • Author(s)
      上野玄太
    • Organizer
      名古屋大学宇宙地球環境研究所 研究集会 「宇宙地球環境の理解に向けての統計数理的アプローチ」
    • Related Report
      2019 Annual Research Report
  • [Presentation] ヒストグラムモデルの情報量規準2019

    • Author(s)
      上野玄太
    • Organizer
      統計数理研究所公募型共同利用研究集会 データサイエンスの新展開:応用と数理
    • Related Report
      2019 Annual Research Report
  • [Presentation] Bayesian estimation of the observation-error covariance and its application to particle filtering2019

    • Author(s)
      Ueno, G.
    • Organizer
      High Dimensional and Bayesian Inference toward Quantifying Real-World Uncertainties
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 背景誤差の非ガウス分布を考慮したアンサンブル同化手法2019

    • Author(s)
      近藤圭一、三好建正
    • Organizer
      日本気象学会2019年度秋季大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Non-Gaussian statistics in global atmospheric dynamics with a 10240-member ensemble Kalman filter experiment using an intermediate AGCM2019

    • Author(s)
      Kondo, K., T. Miyoshi
    • Organizer
      米国地球物理学連合秋季大会(AGU 2019 Fall meeting)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Local Particle Filter Implemented with Minor Modifications to the LETKF Code2019

    • Author(s)
      T. Miyoshi, S. Kotsuki, K. Kondo, R. Potthast
    • Organizer
      米国地球物理学連合秋季大会(AGU 2019 Fall meeting)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] What is the source of chaos in MCS?2019

    • Author(s)
      Kawabata, T., and G. Ueno
    • Organizer
      ICMCS-XIII
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] On Non-Gaussian Probability Densities on Convection Initiation and Development using a Particle Filter with a Storm-Scale Numerical Weather Prediction Model2019

    • Author(s)
      Kawabata, T., and G. Ueno
    • Organizer
      International Symposium on Data Assimilation 2019
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] An ensemble Kalman filter using potential vorticity for atmospheric multi-scale data assimilation2019

    • Author(s)
      Tsuyuki, T.
    • Organizer
      The 7th International Symposium on Data Assimilation
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 観測誤差共分散行列の推定と粒子フィルタ2019

    • Author(s)
      上野玄太
    • Organizer
      情報・システム研究機構 データサイエンス共同利用基盤施設 共同研究集会「データ科学の応用と展望」
    • Related Report
      2018 Annual Research Report
  • [Presentation] 当たるシミュレーションを作る:データ同化の考え方2019

    • Author(s)
      上野玄太
    • Organizer
      第22回若手科学者によるプラズマ研究会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 雲解像粒子フィルタを用いた積乱雲の発生・発達に関する確率分布解析2018

    • Author(s)
      川畑拓矢, 上野玄太
    • Organizer
      第32回数値流体力学シンポジウム
    • Related Report
      2018 Annual Research Report
  • [Presentation] 雲解像粒子フィルタを用いた積乱雲の発生・発達に関する確率分布解析2018

    • Author(s)
      川畑拓矢, 上野玄太
    • Organizer
      日本気象学会2018年度秋季大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Non-Gaussian PDFs on Convection Initiation with a Particle Filter2018

    • Author(s)
      Kawabata, T., and G. Ueno
    • Organizer
      データ同化ワークショップ
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 二重偏波レーダーデータ同化観測演算子の開発とその性能評価2018

    • Author(s)
      川畑拓矢
    • Organizer
      衛星シミュレータ研究会
    • Related Report
      2018 Annual Research Report
  • [Presentation] A storm-scale particle filter for investigating predictability of convection initiation and development2018

    • Author(s)
      Kawabata, T., and G. Ueno
    • Organizer
      Workshop on Sensitivity Analysis and Data Assimilation in Meteorology and Oceanography
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Development of a storm-scale particle filter for investigating predictability of convection initiation and development2018

    • Author(s)
      Kawabata, T., and G. Ueno
    • Organizer
      Japan Geoscience Union Meeting 2018
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] A Study on Non-Gaussian Probability Densities on Convection Initiation and Development using a Particle Filter with a Storm-Scale Numerical Weather Prediction Model2018

    • Author(s)
      Kawabata, T., and G. Ueno
    • Organizer
      The 5th International Workshop on Nonhydrostatic Models
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] PV inversionを用いたアンサンブルカルマンフィルタ(第2報)2018

    • Author(s)
      露木 義
    • Organizer
      日本気象学会2018年度春季大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] PV inversionを用いたアンサンブルデータ同化の研究2018

    • Author(s)
      住友雅司, 露木 義
    • Organizer
      日本気象学会2018年度春季大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Bayesian estimation of the observation-error covariance matrix and its application to particle filtering2018

    • Author(s)
      Ueno, G.
    • Organizer
      Workshop on Computational Statistics and Machine Learning
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Name, analogy, and collaboration2018

    • Author(s)
      上野玄太
    • Organizer
      ROIS/I-URIC 若手研究者クロストーク
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Development of Assimilation Methods for Dual Polarimetric Radar Data2018

    • Author(s)
      Kawabata, T., H. Yamauchi, N. Nagumo, and A. Adachi
    • Organizer
      Workshop on Dual Polarimetric Radar
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Development of a storm-scale particle filter for investigating predictability of convection initiation and development2018

    • Author(s)
      Kawabata, T. and G. Ueno
    • Organizer
      6th International Symposium on Data Assimilation
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Bayesian estimation of the observation error covariance matrix in ensemble-based filters2018

    • Author(s)
      Ueno, G.
    • Organizer
      6th International Symposium on Data Assimilation
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 二重偏波パラメータに関する統計調査2018

    • Author(s)
      栗花卓弥, 川畑拓矢
    • Organizer
      2018年度気象学会春季大会
    • Related Report
      2017 Annual Research Report
  • [Presentation] アンサンブル予報と確率分布推定2018

    • Author(s)
      上野玄太
    • Organizer
      第81回CAVE研究会
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] Data assimilation and optimal error covariance2017

    • Author(s)
      Ueno, G.
    • Organizer
      2nd ISM-ZIB-IMI MODAL Workshop
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] データ同化システム構築の次の方法2017

    • Author(s)
      上野玄太
    • Organizer
      SICE制御部門データ科学とリンクした次世代の適応学習制御調査研究会第1回講義会「データ同化とデータ駆動型の科学」
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] 気象予測の舞台裏:シミュレーションとアンサンブル2017

    • Author(s)
      上野玄太
    • Organizer
      大学共同利用機関シンポジウム
    • Related Report
      2017 Annual Research Report
  • [Presentation] 結合モデルへのデータ同化2017

    • Author(s)
      上野玄太
    • Organizer
      名古屋大学宇宙地球環境研究所研究集会「宇宙環境の理解に向けての統計数理的アプローチ」
    • Related Report
      2017 Annual Research Report
  • [Presentation] NHMを用いた粒子フィルタの開発に向けて2017

    • Author(s)
      川畑拓矢
    • Organizer
      第3回アンサンブルデータ同化摂動に関する研究会
    • Related Report
      2017 Annual Research Report
  • [Presentation] 粒子フィルタを用いた積乱雲の発生・発達に関する不確実性の解明にむけて2017

    • Author(s)
      川畑拓矢, 上野玄太,国井勝,瀬古弘,橋本明弘
    • Organizer
      2017年度日本気象学会秋季大会
    • Related Report
      2017 Annual Research Report
  • [Presentation] 雲解像NHM-PFの開発2017

    • Author(s)
      川畑拓矢, 上野玄太,国井勝,瀬古弘,橋本明弘, 露木義
    • Organizer
      第4回アンサンブルデータ同化摂動に関する研究会
    • Related Report
      2017 Annual Research Report
  • [Book] Multifunctional Operation and Application of GPS2018

    • Author(s)
      Kawabata, T. and Y. Shoji (共同執筆)
    • Publisher
      InTech
    • Related Report
      2017 Annual Research Report
  • [Book] 人工知能学大辞典2017

    • Author(s)
      上野玄太(共同執筆)
    • Total Pages
      1600
    • Publisher
      共立出版
    • ISBN
      9784320124202
    • Related Report
      2017 Annual Research Report

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi