Project/Area Number |
17H02995
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Plasma science
|
Research Institution | Tokyo University of Agriculture and Technology |
Principal Investigator |
Shunjiro Shinohara 東京農工大学, 工学(系)研究科(研究院), 名誉教授 (10134446)
|
Co-Investigator(Kenkyū-buntansha) |
大西 直文 東北大学, 工学研究科, 教授 (20333859)
桑原 大介 中部大学, 工学部, 准教授 (60645688)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥18,200,000 (Direct Cost: ¥14,000,000、Indirect Cost: ¥4,200,000)
Fiscal Year 2019: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2018: ¥5,460,000 (Direct Cost: ¥4,200,000、Indirect Cost: ¥1,260,000)
Fiscal Year 2017: ¥9,100,000 (Direct Cost: ¥7,000,000、Indirect Cost: ¥2,100,000)
|
Keywords | プラズマ / ヘリコン波 / 無電極 / 加速 / ヘリコン / 電磁加速 |
Outline of Final Research Achievements |
Specific impulse in the electric prupulsion is higher than the cheical one, and it is crucial to develop electric propulsion rockets usin plasmas for future electric satellite, interplanetary transport etc. The development of the plasma rockets with long lige with high power is challenging for, e.g., a deep space exploration to exceed "Hayabusa" project. In this research, we have succeeded to obtain the following results, using a proposed concept of "electrodeless" condition, which has entire processes of hihg-density plasma production and novel electromagnetic acceleration. Here, we have investigated physical phenomena with advanced, developed diagnostics and therory/simulation, leading to new findings and established a proto-type model by optimization: plasma pridcution with the smallest and the largest diameters (0.05-74 cm), new gas feeding system (internal and supersonic types), rotating magnetic field and m = 0 half cycle accerelation methods.
|
Academic Significance and Societal Importance of the Research Achievements |
学術的意義は以下:1)プラズマ生成と加速過程での無電極運転実証、2)高密度ヘリコンプラズマ生成機構の更なる理解、3)新提案の先進電磁加速法の発展、4)先端診断開発でのプラズマ特性解析、5)理論・シミュレーションとの比較や異分野統合。 社会的意義は、大電力で高効率の無電極推進(長寿命)は、宇宙産業へのインパクトが大きい。高エンタルピー風洞実験にも活用できる。波及効果として、基礎分野で太陽風プラズマシミュレーション実験、磁気再結合実験やニュートロン源で、応用分野では、超高密度・高速プラズマ流は新材料開発や超高速表面処理等、環境・医療分野ではゴミ焼却、超高速滅菌・殺菌が考えられる。
|