Electrocatalytic CO2 reduction with Au nanosheets
Project/Area Number |
17H03127
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Inorganic industrial materials
|
Research Institution | Shinshu University |
Principal Investigator |
Sugimoto Wataru 信州大学, 学術研究院繊維学系, 教授 (20313843)
|
Co-Investigator(Kenkyū-buntansha) |
望月 大 東京電機大学, 工学部, 准教授 (90434315)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥17,290,000 (Direct Cost: ¥13,300,000、Indirect Cost: ¥3,990,000)
Fiscal Year 2019: ¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2018: ¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2017: ¥7,410,000 (Direct Cost: ¥5,700,000、Indirect Cost: ¥1,710,000)
|
Keywords | 触媒・化学プロセス / ナノ材料 / 表面・界面物性 / 無機工業化学 |
Outline of Final Research Achievements |
This study focused on the use of two dimensional nanosheet catalysts to improve the efficiency and selectivity of CO2 electrolysis. First, a Ru core@Au shell nanosheet catalyst was prepared via a surface limited surface redox reaction. The developed catalyst has a large specific surface area of 110 m2/g-Au and shows activity towards electro-reduction of CO2. Furthermore, Cu-based catalysts, which are known to preferentially reduce CO2 to hydrocarbons and alcohols, were also studied. An organic-copper hydroxide intercalation compound was electro-reduced in a CO2 saturated neutral electrolyte to prepare reduced CuOx catalyst. The interlayer distance differs depending on the organic species, and the longer interlayer distance results in easier growth of dendritic Cu. The prepared reduced CuOx catalyst showed high selectivity towards ethylene formation.
|
Academic Significance and Societal Importance of the Research Achievements |
ナノサイズのAu粒子は不安定で、触媒として利用することは難しいが、ナノシートであれば安定で高い表面利用率も実現できる。本研究の成果は、低次元性の特異性や多孔質電極中の物質移動をモデル化でき、低次元材料の物理化学の発展に寄与する。ナノシートの特長である高比表面積を特徴とした電極系を創製することで、現状のナノ粒子触媒よりも高性能な触媒を開発できた。本提案コンセプトは電解CO2還元以外への触媒反応系に展開可能であり、多方面への波及効果が大きい。
|
Report
(4 results)
Research Products
(2 results)