Project/Area Number |
17H03144
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Materials/Mechanics of materials
|
Research Institution | Kyoto University |
Principal Investigator |
Hojo Masaki 京都大学, 工学研究科, 教授 (70252492)
|
Co-Investigator(Kenkyū-buntansha) |
西川 雅章 京都大学, 工学研究科, 准教授 (60512085)
松田 直樹 京都大学, 工学研究科, 助教 (90756818)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥17,420,000 (Direct Cost: ¥13,400,000、Indirect Cost: ¥4,020,000)
Fiscal Year 2019: ¥5,590,000 (Direct Cost: ¥4,300,000、Indirect Cost: ¥1,290,000)
Fiscal Year 2018: ¥5,460,000 (Direct Cost: ¥4,200,000、Indirect Cost: ¥1,260,000)
Fiscal Year 2017: ¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
|
Keywords | 炭素繊維複合材料 / 破壊じん性 / 破壊力学 / メゾ構造 / 損傷許容性 |
Outline of Final Research Achievements |
In order to obtain the knowledge for improving the damage tolerance of carbon fiber reinforced composite monolithic structures, we examined the properties controlling the mechanical properties and fracture properties from multiscale viewpoints. (1) We obtained the knowledge about the effect of matrix plastic deformation on the mode II fracture toughness, using the experiments, image analyses and finite element analyses, as an important parameter for damage tolerance of composite structures. (2) Based on the peridynamics simulations considering the fracture toughness of materials, we constructed numerical models to evaluate matrix crack initiation for different ply thickness as examples. (3) To evaluate the relationship between crosslink structures and mechanical properties of epoxy resin at the atomistic/molecular scale, we constructed a method to evaluate the viscosity as typical matrix properties controlling the composite viscoelastic properties and processability.
|
Academic Significance and Societal Importance of the Research Achievements |
複合材料の破壊じん性に関するこれまでの研究は,構成する材料の塑性変形や粒子強化等の材料付与の影響が,具体的に微視的な破壊機構をどのように変化させ,破壊じん性に影響するかを十分に明らかにできていなかった.マルチスケールな視点からの検討により,破壊じん性の制御につなげるための基礎を検討したことが学術的な意義である.また,樹脂特性を分子シミュレーションにより検討することで,成形・硬化時の材料特性変化の傾向を把握することができる.このような材料特性は複合材料構造の残留応力評価において重要とされており,成形・硬化プロセスを考慮したより先進的な構造の破壊特性の評価につながる第一歩となる.
|