Project/Area Number |
17H03149
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Materials/Mechanics of materials
|
Research Institution | Chiba Institute of Technology |
Principal Investigator |
Hara Shotaro 千葉工業大学, 工学部, 准教授 (10401134)
|
Co-Investigator(Kenkyū-buntansha) |
鹿園 直毅 東京大学, 生産技術研究所, 教授 (30345087)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥17,940,000 (Direct Cost: ¥13,800,000、Indirect Cost: ¥4,140,000)
Fiscal Year 2019: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2018: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2017: ¥9,360,000 (Direct Cost: ¥7,200,000、Indirect Cost: ¥2,160,000)
|
Keywords | 固体酸化物形燃料電池 / 焼結 / トモグラフィー / マルチスケール / 多孔構造 / 界面 / キネティックモンテカルロ / 微細構造 / 多孔質 / 有限要素法 / 離散要素法 / FIB-SEM / 燃料電池 / 機械材料・材料力学 |
Outline of Final Research Achievements |
Co-sintering of the electrode and electrolyte in solid oxide fuel cell is known as the promising technique, which can reduce the fabrication cost and time. However, the better understanding of its microstructure, mechanical property and macroscopic deformation after co-sintered electrode is still lacking. In this study, the change in three-dimensional microstructure during co-sintering of LSCF cathodes and GDC electrolyte are quantitatively characterized utilizing focused ion beam-scanning electron microscopy technique. In addition, the numerical technique, which can predict the microscopic deformation during co-sintering arising from the densification rate difference between two layers has been developed. Furthermore, a new computational approach that allows us to predict and design the elastic modulus of porous co-fired electrode is successfully presented.
|
Academic Significance and Societal Importance of the Research Achievements |
固体酸化物形燃料電池の低コスト化を実現するためには,一体焼結製造プロセスの理解と制御が必要不可欠である.本研究では,トモグラフィー技術を駆使することで,一体焼結中に三次元的な内部構造が変化する様子を初めて明らかにした.さらに,一体焼結プロセス中の変形特性や機械的特性を予測できるシミュレーション技術の基礎を構築した.得られた知見と技術を発展させれば,一体焼結プロセスの最適化,高性能な電池製造の実現につながる.
|