Analysis of rarefied gas flows induced by liquid evaporation from nanoscale pore arrays and its application to cooling devices
Project/Area Number |
17H03172
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Fluid engineering
|
Research Institution | The University of Tokyo |
Principal Investigator |
Kinefuchi Ikuya 東京大学, 大学院工学系研究科(工学部), 准教授 (30456165)
|
Co-Investigator(Kenkyū-buntansha) |
吉本 勇太 東京大学, 大学院工学系研究科(工学部), 助教 (90772137)
堀 琢磨 東京農工大学, 工学(系)研究科(研究院), 准教授 (50791513)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥17,550,000 (Direct Cost: ¥13,500,000、Indirect Cost: ¥4,050,000)
Fiscal Year 2019: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2018: ¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2017: ¥8,580,000 (Direct Cost: ¥6,600,000、Indirect Cost: ¥1,980,000)
|
Keywords | 分子流体力学 / 希薄気体流 / 気液界面 / クヌッセン層 / 高熱流束除熱 |
Outline of Final Research Achievements |
We focused on nonequilibrium gas flows (Knudsen layers) induced by the evaporation from porous surfaces and obtained the following results. (1) To realize the velocity distribution measurement of gas molecules evaporating from a liquid surface using the time-of-flight method, we developed a novel experimental technique to maintain a liquid-vapor interface in a vacuum environment for a long period. The use of a porous membrane with an adequate pore size can significantly suppress the collisions between gas molecules after the evaporation from the liquid surface. (2) Numerical techniques were developed to efficiently analyze evaporating gas flows from porous surfaces using the low-variance deviational Monte Carlo method.
|
Academic Significance and Societal Importance of the Research Achievements |
細孔表面からの蒸発は,自然や工学応用の様々な場面において普遍的にみられる現象である.高精度な蒸発モデルを構築するためには,液面から蒸発した直後の気体分子の速度分布を把握することが望まれるが,技術的困難から信頼性の高い計測結果はこれまでに報告されていない.また,細孔表面のように複雑な形状からの蒸発による非平衡気体流れを取り扱うために,効率的な数値解析法が求められている.本研究で得られた成果はこれらの課題の解決につながるものであり,今後,細孔からの蒸発を利用した気化冷却デバイスの開発などへの応用が期待される.
|
Report
(4 results)
Research Products
(30 results)