Study of the effects of boundary geometry in rarefied gases
Project/Area Number |
17H03173
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Fluid engineering
|
Research Institution | Kyoto University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
田口 智清 京都大学, 情報学研究科, 教授 (90448168)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥11,050,000 (Direct Cost: ¥8,500,000、Indirect Cost: ¥2,550,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2018: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2017: ¥6,890,000 (Direct Cost: ¥5,300,000、Indirect Cost: ¥1,590,000)
|
Keywords | ボルツマン方程式 / 希薄気体 / 特異性 / 速度分布関数 / すべり流理論 / 分子流体 / 流体工学 |
Outline of Final Research Achievements |
In ordinary circumstances, inter-molecular collisions inside fluid occur frequently and play a decisive role in determining the fluid motion. In extraordinary situations, most typically in rarefied gases and/or in microscopic systems, however, such collisions is much less dominant, even becomes rare events; accordingly the fluid motion reflects the free molecular, or ballistic, transport aspects. In the present project, the influence of this ballistic aspect especially on the macroscopic gas behavior near the boundary is investigated, with a special interest in the correlation between the singular behavior of the spatial gradient of fluid-dynamical quantities normal to the boundary and the geometry of the boundary. Slip-flow theory has been studied simultaneously to proceed the project in an organic way.
|
Academic Significance and Societal Importance of the Research Achievements |
速度分布関数の不連続面は至る所に遍在する(ユビキタス)が,それが通常の流体力学(連続体力学)的な物理量にもたらしうる特異な影響までを考察する取り組みは独自のものである. 巨視的考察に基づく流体力学では流速勾配の発散は粘性応力の発散を,等値線の屈折は一様媒質中での応力,熱伝導率の跳びを意味し許容されないので,本研究により新しい物理的描像が発信される. 解明する現象自体が気体運動論の専門家にとっても新規であるうえ,その要因を速度分布関数の不連続面という微視的現象に結び付ける発想は他に類をみない.また,現象理解のために相補的にすすめたすべり流理論の整備は成果の普及の便を高めるものである.
|
Report
(4 results)
Research Products
(13 results)