Study on heat recovery process within anode for downsizing fuel cell module
Project/Area Number |
17H03185
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Thermal engineering
|
Research Institution | Kyushu University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
中島 裕典 九州大学, 工学研究院, 助教 (70432862)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥17,550,000 (Direct Cost: ¥13,500,000、Indirect Cost: ¥4,050,000)
Fiscal Year 2019: ¥5,980,000 (Direct Cost: ¥4,600,000、Indirect Cost: ¥1,380,000)
Fiscal Year 2018: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2017: ¥8,060,000 (Direct Cost: ¥6,200,000、Indirect Cost: ¥1,860,000)
|
Keywords | エネルギー工学 / 固体酸化物形燃料電池 / 燃料改質 / 傾斜触媒反応場 / 内部改質 / 改質一体型モジュール / バイオガス / ペーパー触媒 / 直接内部改質 / 改質器一体型 |
Outline of Final Research Achievements |
A method to control the reaction rate in a reforming domain for getting a desired temperature distribution was established by using the paper-structured catalyst (PSC) technology. Aiming at the development of a compact and highly-efficient solid oxide fuel cell (SOFC), one-cell module (single cell integrated with plate-type reformer) was designed and developed. PSC segments with uniform or graded arrays were packed in the reformer, and power generation tests of the one-cell module were conducted by feeding simulated biogas at the furnace temperature of 800oC and 0.2 A cm-2. Graded PSC arrays leading to the uniform temperature distribution resulted in the twofold durability of the module compared to the uniform PSC arrays which caused strong temperature gradient at the fuel inlet side. This achievement was applied to the two-cell module (PSC-packed plate-type reformer sandwiched by two cells), and power generation efficiency of 41% was recorded at 0.8 A cm-2 (Fuel utilization 70%).
|
Academic Significance and Societal Importance of the Research Achievements |
地球規模での燃料電池の普及には、既存インフラを使用可能な炭化水素燃料で作動するシステムの開発が不可欠である。本研究では、ペーパー触媒技術を応用し、改質反応場の温度分布を自在に調整できる手法を確立し、改質機能をスタック内部に押し込めた新コンセプトの固体酸化物形燃料電池(SOFC)モジュールを開発したが、これにより、発電効率が高められると同時にコストも低減されるため、社会受容性の高い燃料電池システムの創出が期待される。特に、開発途上国や新興国にはバイオマス賦存量に富む地域が多く、バイオマス廃棄物由来のバイオガスを直接電気に変換できる燃料電池システムが開発されれば、世界の低炭素化に大きく貢献できる。
|
Report
(4 results)
Research Products
(15 results)