Project/Area Number |
17H03224
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Electronic materials/Electric materials
|
Research Institution | Hokkaido University |
Principal Investigator |
Sato Taketomo 北海道大学, 量子集積エレクトロニクス研究センター, 准教授 (50343009)
|
Co-Investigator(Kenkyū-buntansha) |
本久 順一 北海道大学, 情報科学研究院, 教授 (60212263)
橋詰 保 北海道大学, 量子集積エレクトロニクス研究センター, 教授 (80149898)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥18,070,000 (Direct Cost: ¥13,900,000、Indirect Cost: ¥4,170,000)
Fiscal Year 2019: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2018: ¥5,330,000 (Direct Cost: ¥4,100,000、Indirect Cost: ¥1,230,000)
Fiscal Year 2017: ¥8,710,000 (Direct Cost: ¥6,700,000、Indirect Cost: ¥2,010,000)
|
Keywords | 窒化ガリウム / 電気化学プロセス / 低損傷エッチング / トランジスタ / 窒化物半導体 / 電子デバイス / 電気化学反応 / ウェットエッチング |
Outline of Final Research Achievements |
The photo-electrochemical (PEC) process was developed for fabricating recessed-gate AlGaN/GaN high-electron-mobility transistors (HEMTs). The photo-carriers generated in the top AlGaN layer caused homogeneous etching of AlGaN with a smooth surface. Self-termination phenomena observed under optimal PEC condition were useful for precisely controlling the etching depth in the AlGaN layer. Two types of HEMTs, i.e., Schottky-gate and metal-insulator-semiconductor (MIS)-gate, were fabricated. A recessed-gate AlGaN/GaN structure fabricated with PEC etching showed positive threshold voltage, and its variation was very small. A recessed-gate structure with PEC etching showed better current transport controllability with a small subthreshold-slope than that of planar-gate and dry-etched-gate AlGaN/GaN structures.
|
Academic Significance and Societal Importance of the Research Achievements |
本課題で開発した光電気化学(PEC)エッチングにより、従来のドライエッチングで問題となっていた加工損傷を大幅に抑制させることに成功し、ナノメートルスケールでエッチング深さの精密制御が達成された。さらに、エッチング機構を解明し広範の窒化物材料に適用するための基盤技術を確立した。これらの成果は、Siに代わる次世代電力変換用トランジスタとして期待されているGaN系トランジスタの信頼性・安定性向上に繋がると期待される。
|