Project/Area Number |
17H03316
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Hydraulic engineering
|
Research Institution | Kansai University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
奥村 与志弘 関西大学, 社会安全学部, 准教授 (80514124)
河野 和宏 関西大学, 社会安全学部, 准教授 (60581238)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥16,770,000 (Direct Cost: ¥12,900,000、Indirect Cost: ¥3,870,000)
Fiscal Year 2019: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2018: ¥5,850,000 (Direct Cost: ¥4,500,000、Indirect Cost: ¥1,350,000)
Fiscal Year 2017: ¥8,190,000 (Direct Cost: ¥6,300,000、Indirect Cost: ¥1,890,000)
|
Keywords | 機械学習 / ニューラルネットワーク / 津波波源断層モデル / 津波シミュレーション / 津波観測 / 津波被害 / 波源断層モデル / 南海トラフ巨大地震津波 / 深層学習 / 転移学習 / 多数津波シナリオ / 津波数値モデル / 津波伝播シミュレーション / 津波浸水シミュレーション / 建物被害 / Convolutional LSTM / 津波 / 人工知能 / 自然災害 / 防災 |
Outline of Final Research Achievements |
For effective disaster management, prompt and accurate tsunami source estimation is important not only for updating tsunami warnings but also for determining emergency responses. Although tsunami waveform inversion is a powerful tool for estimating tsunami sources, expert analysis of a large amount of data by trial-and-error methods is needed. Machine learning is an effective means of extracting features from complex big data and determining underlying laws related to different phenomena. In the study, a model to estimate tsunami source from observed data by using machine learning was developed. Using the deep learning algorithm, a neural network model was constructed. The training data were based on a dataset generated using the fault models and the virtually observed water level changes. The trained model was validated by examining whether it could determine the tsunami source parameters for the different scenarios from the virtually observed data.
|
Academic Significance and Societal Importance of the Research Achievements |
巨大津波災害においては、様々な物理的・人的要因が複雑に影響しあって被害を拡大させる。よって、大量の複雑な情報を分析する必要があり、人工知能の活用が期待される分野であるが、現状ではほとんど導入されていない。本研究は津波研究の中心となる津波波源に対して機械学習の適用を試みたものであり、その学術的意義は高いと考えられる。 また、津波波源は津波警報やハザードマップなどの津波防災技術の基礎になるものである。よって、津波波源を機械学習により迅速に調べることができるようになれば、津波防災実務への貢献も期待される。
|