Inverse magnetostrictive effect in Fe-Ga alloy single crystals for application to vibration power generation
Project/Area Number |
17H03374
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Physical properties of metals/Metal-base materials
|
Research Institution | Osaka University (2018-2019) Tohoku University (2017) |
Principal Investigator |
Fujieda Shun 大阪大学, 工学研究科, 准教授 (60551893)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥17,290,000 (Direct Cost: ¥13,300,000、Indirect Cost: ¥3,990,000)
Fiscal Year 2019: ¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2018: ¥7,280,000 (Direct Cost: ¥5,600,000、Indirect Cost: ¥1,680,000)
Fiscal Year 2017: ¥5,850,000 (Direct Cost: ¥4,500,000、Indirect Cost: ¥1,350,000)
|
Keywords | 磁性・電子・情報材料 / 磁区構造 |
Outline of Final Research Achievements |
Vibration power generation is one of the promising energy harvesting technologies that can generate electrical power from ambient vibration. Vibration power generators using the inverse magnetostrictive effect have attracted a great deal of attention for application to electronic power sources for wireless devices. Recently, the superior vibration energy generation performance due to the stress-induced large magnetic flux change was demonstrated by generators using Fe-Ga alloy single crystals. In this study, the magnetic domain structure of Fe-Ga alloy single crystals was observed using a Kerr effect microscope under magnetic fields and tensile stress. As a result, characteristic change of the magnetic domain structure due to the inverse magnetostrictive effect was directly observed. The mechanism of stress-induced large magnetic flux change was successfully explained in connection with the inverse magnetostrictive effect.
|
Academic Significance and Societal Importance of the Research Achievements |
様々な情報を収集および集約するIoTデバイスは、社会および産業の基盤技術としての重要性が高まっている。しかし、従来のIoTデバイスは電池で駆動しているため、その数が増えると電池の管理および維持の手間が膨大となり普及の障害となる。Fe-Ga合金単結晶を搭載した振動発電デバイスは、身の回りで頻発する振動で数mWの電力を作りだすことが可能で、耐久性にも優れている。本研究により、逆磁歪効果に起因した応力印加による大きな磁束変化の発生機構が明らかになり、さらなる振動発電特性の向上が期待できる。従って、IoTデバイスの普及を促進するメンテナンスフリーの小型電源の実現に貢献する成果を得た。
|
Report
(4 results)
Research Products
(31 results)