Development of innovative metal nanoparticle catalyst based on the interfacial cooperative effect
Project/Area Number |
17H03457
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Catalyst/Resource chemical process
|
Research Institution | Osaka University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥17,680,000 (Direct Cost: ¥13,600,000、Indirect Cost: ¥4,080,000)
Fiscal Year 2019: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2018: ¥5,330,000 (Direct Cost: ¥4,100,000、Indirect Cost: ¥1,230,000)
Fiscal Year 2017: ¥9,360,000 (Direct Cost: ¥7,200,000、Indirect Cost: ¥2,160,000)
|
Keywords | ナノ粒子 / 触媒 / グリーンケミストリ― / 還元反応 / 金属ナノ粒子 / 合金 / 界面 / グリーンケミストリー / 協奏効果 |
Outline of Final Research Achievements |
Amine synthesis via amide hydrogenation is of crucial importance in organic synthesis. However, amide groups have low reactivity and are difficult to reduce. In 2005, a Roundtable of the ACS Green Chemistry Institute and leading global pharmaceutical companies decided “the catalytic hydrogenation of amides to amines with H2 under mild conditions, ideally lower than 30 bar H2 and 70 oC” is one of 12 key innovative research areas for the future sustainable production of pharmaceuticals. However, until now, no catalysts that are effective under the mild conditions have been developed. Herein, we present VOx-decorated Pt nanoparticle catalyst that enables hydrogenation of amides to amines under mild conditions, i.e., lower than 30 bar H2/70 oC.2 Especially, the bimetallic catalyst could promote the hydrogenation under just 1 bar of H2 at 70 oC or 5 bar of H2 at room temperature. This is the first time that hydrogenation of amides to amines under mild conditions has been achieved.
|
Academic Significance and Societal Importance of the Research Achievements |
研究成果の学術的意義:白金とバナジウムを複合すると、白金で水素を、バナジウムでアミドを活性化する協奏的触媒作用により高難度の還元反応を促進させることに成功した。本成果は、異種金属を複合化することで、異種金属間の協奏効果を最大限に発現させる新規なバイメタルナノ粒子の触媒設計指針を与える。
社会的意義:本研究成果により、世界で初めて常圧の水素ガスでアミドを還元することができることを示し、次世代の高機能化学品製造プロセスにおける夢の反応の一つを実現したことから、省エネルギーかつ安全で、有害な廃棄物を一切副生しないアミドの還元反応プロセスの開発が期待されます。
|
Report
(4 results)
Research Products
(75 results)