Project/Area Number |
17H03703
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Plant molecular biology/Plant physiology
|
Research Institution | Utsunomiya University (2019) National Institute for Basic Biology (2017-2018) |
Principal Investigator |
Tamada Yosuke 宇都宮大学, 工学部, 准教授 (50579290)
|
Co-Investigator(Kenkyū-buntansha) |
三浦 則明 北見工業大学, 工学部, 教授 (30209720)
榊原 恵子 立教大学, 理学部, 准教授 (90590000)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥17,810,000 (Direct Cost: ¥13,700,000、Indirect Cost: ¥4,110,000)
Fiscal Year 2019: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2018: ¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2017: ¥8,580,000 (Direct Cost: ¥6,600,000、Indirect Cost: ¥1,980,000)
|
Keywords | 細胞の運命転換 / エピゲノム / シングルセル / トランスクリプトーム / イメージング / 幹細胞 |
Outline of Final Research Achievements |
Purpose of the research is to understand the epigenome dynamics and the interaction between epigenome and transcriptome, which drive the cell-fate transition including the reprogramming from differentiated cells to stem cells. For this purpose, we performed single-nucleus 4D (3D + time lapse) imaging and single-cell transcriptome analyses during the reprogramming process of the moss Physcomitrella patens. Combined with previously performed ChIP-seq analyses of histone modifications H3K27me3 and H3K4me3, we found that, during the reprogramming process, the transcriptome actively changed during the reprogramming triggered by the physical damage, while the epigenome of the histone modifications did not largely change until the end of the reprogramming process. These data suggest that, at least for the reprogramming of Physcomitrella, the transcriptome changes first and then the epigenome of histone modifications changes toward the cell-fate change.
|
Academic Significance and Societal Importance of the Research Achievements |
多細胞生物の発生や再生には細胞の運命転換が不可欠である。細胞の運命転換にはトランスクリプトームとエピゲノムの両方が変動することが必須であるが、細胞運命転換過程におけるエピゲノムの動態や、トランスクリプトームとエピゲノムがどのように相互作用しながら細胞の運命転換を駆動しているのかについてはよくわかっていなかった。本研究では、ヒメツリガネゴケの幹細胞化を細胞の運命転換のモデルとしてトランスクリプトームとエピゲノムの動態や相互作用をシングルセルレベルで解明したもので、今後の細胞運命転換研究の基盤となるものである。
|