• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Mechanisms for integrated regulation of sulfate uptake, transport, and reduction

Research Project

Project/Area Number 17H03785
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Plant nutrition/Soil science
Research InstitutionKyushu University

Principal Investigator

Maruyama-Nakashita Akiko  九州大学, 農学研究院, 准教授 (70342855)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥17,420,000 (Direct Cost: ¥13,400,000、Indirect Cost: ¥4,020,000)
Fiscal Year 2020: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2019: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2018: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2017: ¥7,540,000 (Direct Cost: ¥5,800,000、Indirect Cost: ¥1,740,000)
Keywords硫酸イオン輸送体 / 硫黄同化 / 栄養応答 / グルコシノレート / 転写因子 / 遺伝子発現 / シロイヌナズナ / 植物 / 硫黄 / 輸送体
Outline of Final Research Achievements

In this study, we identified cis-regulatory sequences responsible for the Sulfur(S)-deficiency (-S) response of SULTR1;2, SULTR2;1, and APR3, and isolated candidate transcription factors that bind to each of them for further functional analysis. Also, we isolated mutants defect with -S response of SULTR2;1 and APR3 and identified causal gene candidates. In addition, we showed the necessity of the C-terminal 57 amino acids for SLIM1 function and suggested that SULTR1;2 and SLIM1 are different roles in S signaling. We also identified the enzyme responsible for glucosinolate (GSL) catabolism under -S and in the dark and revealed the importance of GSL in S storage and plant growth maintenance under -S.

Academic Significance and Societal Importance of the Research Achievements

SLIM1の制御を受けない「硫酸イオン還元」と「地上部への硫酸イオン移行」に焦点をあて、それらの-S応答機構と制御因子の同定を試みた。制御因子の機能同定は道半ばであるが、今後の研究展開に資する候補を複数得ることができた。これらの機能を同定し、既知の制御因子との情報伝達系の中での位置関係を明らかにすることで、S同化系制御の大枠を明らかにできると考えている。-S下で植物の生存を維持する機構として、GSL分解が一次代謝へのS再利用に果たす役割を解明できた。これらの成果は、-S環境でもよく育つ植物やSが十分にある環境でもS同化効率がよく有用含硫化合物を多く含む作物の育成に活用できる。

Report

(1 results)
  • 2022 Final Research Report ( PDF )

URL: 

Published: 2017-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi