• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Learning Algorithm for Advanced Generative Models

Research Project

Project/Area Number 17H04693
Research Category

Grant-in-Aid for Young Scientists (A)

Allocation TypeSingle-year Grants
Research Field Intelligent informatics
Research InstitutionThe University of Tokyo

Principal Investigator

Sato Issei  東京大学, 大学院情報理工学系研究科, 准教授 (90610155)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥25,090,000 (Direct Cost: ¥19,300,000、Indirect Cost: ¥5,790,000)
Fiscal Year 2019: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2018: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2017: ¥10,660,000 (Direct Cost: ¥8,200,000、Indirect Cost: ¥2,460,000)
Keywords機械学習 / 生成モデル / 学習アルゴリズム / 表形式 / データ拡張 / ドメイン適応 / 敵対的学習 / 深層学習 / ベイズニューラルネット / 逐次学習 / 離散構造 / 深層信念ネットワーク / 再パラメータ化 / 局所期待勾配
Outline of Final Research Achievements

In recent years, the development of generative models in the field of machine learning has been remarkable, reaching a level where images and videos of people who do not exist in reality are indistinguishable to the human eye. However, learning such generative models differs from learning ordinary discriminative models in that it often requires many heuristics in the learning method due to the instability of learning caused by the difficulty of optimizing the objective function and the non-triviality of formulation caused by the difficulty of evaluating the products. In this research, we have worked on elucidating and mitigating the learning instability, developing a generative model for tabular data, which has not been dealt with in existing research, and applying it to minority data analysis.

Academic Significance and Societal Importance of the Research Achievements

生成モデルは通常の機械学習における識別モデルによる予測とはことなり,現実には存在しないデータを生成する.現在では,画像や動画などの生成において人が認識できないレベルまで到達しており,人が数時間数日かけて作成するようなものでも数秒で生成してしまう.これは人の創作活動において大きな変革をもたらす可能性を秘めている.しかし,その学習アルゴリズムは未だに解明できていないことも多く,特に学習の不安定さは問題で,学習アルゴリズムに対して多くのヒューリスティックスと試行錯誤が必要となる.本研究では,学習の安定性に関する基礎研究を行い,また生成モデルの適用範囲を表形式データに拡張し,少数データ解析へ応用した.

Report

(4 results)
  • 2020 Final Research Report ( PDF )
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • Research Products

    (6 results)

All 2020 2019 2018 2017

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 2 results) Presentation (4 results) (of which Int'l Joint Research: 4 results)

  • [Journal Article] Few-shot Domain Adaptation by Causal Mechanism Transfer2020

    • Author(s)
      Takeshi Teshima, Issei Sato, Masashi Sugiyama
    • Journal Title

      Proceedings of Thirty-seventh International Conference on Machine Learning

      Volume: -

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Evaluating the Variance of Likelihood-Ratio Gradient Estimators2017

    • Author(s)
      Seiya Tokui and Issei Sato
    • Journal Title

      Proceedings of the 34th International Conference on Machine Learning

      Volume: 70 Pages: 3414-3423

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Few-shot Domain Adaptation by Causal Mechanism Transfer2020

    • Author(s)
      Takeshi Teshima
    • Organizer
      International Conference on Machine Learning
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Bayesian posterior approximation via greedy particle optimization2019

    • Author(s)
      Futami, F., Cui, Z., Sato, I., & Sugiyama, M.
    • Organizer
      Thirty-Third AAAI Conference on Artificial Intelligence (AAAI2019)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Lipschitz-margin training: Scalable certification of perturbation invariance for deep neural networks.2018

    • Author(s)
      Tsuzuku, Y., Sato, I., & Sugiyama, M.
    • Organizer
      Advances in Neural Information Processing Systems 31
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Evaluating the Variance of Likelihood-Ratio Gradient Estimators2017

    • Author(s)
      Seiya Tokui
    • Organizer
      International Conference on Machine Learning
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi