Genome editing technology that enables gene correction therapies
Project/Area Number |
17H04993
|
Research Category |
Grant-in-Aid for Young Scientists (A)
|
Allocation Type | Single-year Grants |
Research Field |
Medical genome science
|
Research Institution | Tokyo Metropolitan Institute of Medical Science |
Principal Investigator |
MIYAOKA Yuichiro 公益財団法人東京都医学総合研究所, 生体分子先端研究分野, プロジェクトリーダー (20549521)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥23,660,000 (Direct Cost: ¥18,200,000、Indirect Cost: ¥5,460,000)
Fiscal Year 2019: ¥5,980,000 (Direct Cost: ¥4,600,000、Indirect Cost: ¥1,380,000)
Fiscal Year 2018: ¥8,450,000 (Direct Cost: ¥6,500,000、Indirect Cost: ¥1,950,000)
Fiscal Year 2017: ¥9,230,000 (Direct Cost: ¥7,100,000、Indirect Cost: ¥2,130,000)
|
Keywords | ゲノム編集 / HDR / NHEJ / iPS細胞 / 再生医療 / 遺伝子修復 / Cas9改変体 / ノックイン / 相同組換え / 非相同末端結合 / CRISPR/Cas9 |
Outline of Final Research Achievements |
CRISPR/Cas9-mediated genome editing is accomplished by cleavage of target DNA sequences by Cas9 guided by sequence-specific gRNA molecules. The two repair pathways, HDR and NHEJ, are activated by Cas9 at the target sites. NHEJ often induces random insertions or deletions at the target sites. In contrast, the DNA sequences are precisely repaired based on the sequences of template DNA that is homologous to the cleaved DNA in HDR. Therefore, HDR is particularly useful for precise genome editing, because the target DNA sequences are replaced by those of donor DNA molecules that we can introduce into the cell via DNA recombination. However, in general, HDR is much more infrequent than NHEJ. In this study, we reveled that modification of the interaction between the Cas9-gRNA complex and DNA can enhance HDR. This trend was observed in all three cell types we tested, that is, in HEK293T cells, HeLa cells, and human iPS cells.
|
Academic Significance and Societal Importance of the Research Achievements |
細胞の持つ遺伝情報を書き換えるゲノム編集技術は、医療や農業への応用が期待されるが、その実現には、正確に遺伝情報の編集を行う必要がある。CRISPR/Cas9と呼ばれるゲノム編集に用いられるツールは、本来細菌や古細菌の免疫機構であり、必ずしも哺乳類細胞のゲノム編集のために最適化されていない。本研究では、CRISPR/Cas9の標的DNAへの結合の仕方を調整することで、編集の正確さを高められることを見出した。今後のゲノム編集技術の応用につながることが期待される。
|
Report
(4 results)
Research Products
(19 results)
-
-
-
-
-
-
-
[Presentation] Genome-Edited iPSC and Pig Cardiomyopathy Models Reveal Mutant RBM20 Forms Mislocalized Granules to Dominantly Disrupt Global Splicing2019
Author(s)
Yuichiro Miyaoka, Kenneth Tan, Elena Matsa, Steven Mayerl, Amanda Chan, Vanessa Herrera, Aishwarya Kulkarni, Meenakshi Venkatasubramanian, Kashish Chetal, Han Sun, Francesca Briganti, Wu Wei, Saji Oommen, Daniel Carlson, Timothy Nelson, Lars Steinmetz, Jay Schneider, Bruce Conklin, Nathan Salomonis
Organizer
ISSCR 2019 Annual Meeting
Related Report
Int'l Joint Research
-
[Presentation] ゲノム編集iPS細胞およびブタを用いたスプライシング因子RBM20の変異による心筋症発症機序の解析2019
Author(s)
宮岡 佑一郎, Kenneth Tan, Elena Matsa, Steven Mayerl, Amanda Chan, Vanessa Herrera, Aishwarya Kulkarni, Meenakshi Venkatasubramanian, Kashish Chetal, Han Sun, Francesca Briganti Francesca, Wu Wei, Saji Oommen, Daniel Carlson, Timothy Nelson, Lars Steinmetz, Jay Schneider, Bruce Conklin, Nathan Salomonis
Organizer
第4回 日本ゲノム編集学会年会
Related Report
-
-
-
-
-
-
-
-
-
-
-