Study of plant gravity sensors using a new microscope
Project/Area Number |
17H05007
|
Research Category |
Grant-in-Aid for Young Scientists (A)
|
Allocation Type | Single-year Grants |
Research Field |
Plant molecular biology/Plant physiology
|
Research Institution | Saitama University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥26,260,000 (Direct Cost: ¥20,200,000、Indirect Cost: ¥6,060,000)
Fiscal Year 2019: ¥6,890,000 (Direct Cost: ¥5,300,000、Indirect Cost: ¥1,590,000)
Fiscal Year 2018: ¥8,840,000 (Direct Cost: ¥6,800,000、Indirect Cost: ¥2,040,000)
Fiscal Year 2017: ¥10,530,000 (Direct Cost: ¥8,100,000、Indirect Cost: ¥2,430,000)
|
Keywords | 重力感受 / アミロプラスト / カルシウム / 光ピンセット / 遠心顕微鏡 / 重力感知 / 植物 |
Outline of Final Research Achievements |
Plants sense the gravity vector and change their growth orientation accordingly, which is known as gravitropism. Based on the Starch-statolith hypothesis, sedimentation of the starch-filled organelle amyloplast in root columella cells or shoot endodermal cells is supposed to trigger gravity sensing in Arabidopsis. The Cholodny-Went model predicts that redistribution (polar transport) of the plant hormone auxin causes differential growth resulting in tropistic responses in roots and shoots. However, little is known about the mechanisms linking the two critical models: Starch-statolith hypothesis and Cholodny-Went model. Using novel imaging techniques (wide-field fluorescent microscope, confocal laser-scanning microscope equipped with optical tweezer and centrifuge fluorescent microscope), we propose a model that gravity-dependent movements of the amyloplasts directly/indirectly facilitate intracellular polar trafficking of the auxin efflux carrier PIN in shoot endodermal cells.
|
Academic Significance and Societal Importance of the Research Achievements |
植物の重力屈性に関する研究の歴史は古く、チャールズ・ダーウィンの時代まで遡る。本研究で得られた結果は、約100年前に提唱された重力屈性における2つの重要仮説である“デンプン平衡石仮説”と“コロドニー・ベントモデル”をつなぐ重要な知見であり、重力感知機構の全体像の解明に向けて大きな一歩となる。近年、メカノバイオロジーが動物学・医学的にも注目されており、細胞レベルでの重力(機械刺激)感知機構が解明されれば、動植物に普遍的に存在する新しい仕組みの解明にもつながる。また、植物の重力感知機構を遺伝子工学的に改良し耐倒伏性などを向上できれば、生産効率も向上し、農業的意義も大きい。
|
Report
(4 results)
Research Products
(41 results)