• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Machine-learning aided prediction of hypoxia in brain tumor

Research Project

Project/Area Number 17H06488
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeSingle-year Grants
Research Field Radiation science
Research InstitutionHokkaido University

Principal Investigator

Toyonaga Takuya  北海道大学, 医学研究院, 客員研究員 (20804149)

Project Period (FY) 2017-08-25 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords脳腫瘍 / 低酸素 / ポジトロン断層撮影法 / PET / ダイナミック造影MRI / イメージング / 機械学習 / MRI / FDG / 深層学習 / ディープラーニング / FMISO
Outline of Final Research Achievements

We designed a study to predict hypoxia in brain tumors using imaging modalities that can be taken with existing equipment and devices used in daily clinical practice.
18F-fluoromisonidazole (FMISO) (PET tracer designed to detect hypoxia region) were used to evaluate in vivo hypoxia in the brain tumors. widely available imaging modalities were used to predict the FMISO uptake, including 18F-FDG PET (FDG: PET tracer commonly used to estimate the glucose metabolism and in the diagnosis of malignancies), MRI and contrast-enhanced MRI. When these image results were analyzed by machine learning algorithm, hypoxia (FMISO uptake) could be predicted with high accuracy.

Academic Significance and Societal Importance of the Research Achievements

悪性腫瘍における低酸素状態は腫瘍悪性度との関係性が示唆されており、脳腫瘍において低酸素状態を評価することは、術前に悪性度を予測可能にするだけではなく、手術範囲の決定に重要な情報を与える。一方で、低酸素状態の評価に用いる18F-FMISOなどのPET製剤は、ごく限られた施設でしか使用できず、日常的に使用可能な画像検査で低酸素状態を予測できれば臨床的なインパクトは大きい。
今回の検討で18F-FDG PETやMRI画像を用いると、高い精度で低酸素状態が予測可能であることが示せた。今後は本研究を発展させ、より高い精度を示す腫瘍低酸素の予測モデルの開発を目指す。

Report

(3 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Annual Research Report
  • Research Products

    (1 results)

All 2017

All Presentation (1 results) (of which Int'l Joint Research: 1 results)

  • [Presentation] Convolutional neural network (CNN) of MRI and FDG-PET images may predict hypoxia in glioblastoma.2017

    • Author(s)
      Takuya Toyonaga, Tohru Shiga, Kenji Hirata, Shigeru Yamaguchi, Wataru Takeuchi, Kohsuke Kudo, Keiichi Magota, Osamu Manabe, Kentaro Kobayashi, Shiro Watanabe, Yuji Kuge, Nagara Tamaki
    • Organizer
      SNMMI 2017 Annual Meeting
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research

URL: 

Published: 2017-08-25   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi