Materials development of complex hydride solid electrolyte based on clarification of lithium ion conduction mechanism
Project/Area Number |
17H06519
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Single-year Grants |
Research Field |
Structural/Functional materials
|
Research Institution | Tohoku University |
Principal Investigator |
Kim Sangryun 東北大学, 金属材料研究所, 助教 (20801442)
|
Project Period (FY) |
2017-08-25 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 全固体電池 / 固体電解質 / 超イオン伝導体 / 錯体水素化物 / 固体電解質/電極界面 / 水素化物 / リチウム電極 / イオン伝導 / 二次電池 |
Outline of Final Research Achievements |
Complex hydrides have received particular attention as a new class of solid electrolytes owing to their high deformability and outstanding chemical/electrochemical stability against the lithium metal anode. However, the major drawback of complex hydrides is their low ionic conductivity (~10-5 Scm-1 at room temperature), thus requiring high-temperature (~100°C) operation for stable battery performance. Therefore, the development of complex hydride solid electrolytes that exhibit high ionic conductivity at room temperature will be a revolutionary breakthrough for all-solid-state batteries. In this work, we develop a complex hydride lithium superionic conductor from a solid solution of two complex hydrides, namely Li(CB9H10) and Li(CB11H12). The partial replacement of (CB9H10)- with (CB11H12)- stabilizes the disordered high temperature (high-T) phase of Li(CB9H10) at lower temperatures, leading to a lithium superionic conductivity of 6.7 × 10-3 S cm-1 at 25 °C.
|
Academic Significance and Societal Importance of the Research Achievements |
以下の特徴を持つ本研究は、錯体水素化物の特性改善だけでなく、新しい材料設計指針と新しい研究領域の開拓、という観点でも極めて将来性に溢れた研究として位置付けられる。 これまで錯体水素化物において全く報告例のない“錯イオンの分子レベルでの共存化”による新規材料物性の創出という、固体電解質材料の新たな指導原理を提案している。また、固体電解質研究の主流となっている酸化物や硫化物とは異なる物性を実現し、高い潜在性を持ちながらも蓄電池材料としての認識が限定的であった錯体水素化物の学術的・社会的価値を格段に高めるとともに、固体電解質としての材料科学・材料学問において新たな研究領域を切り拓くものと期待される。
|
Report
(3 results)
Research Products
(18 results)
-
[Journal Article] Full-cell hydride-based solid-state Li batteries for energy storage2019
Author(s)
Latroche Michel、Blanchard Didier、Cuevas Fermin、El Kharbachi Abdelouahab、Hauback Bjorn C.、Jensen Torben R.、de Jongh Petra E.、Kim Sangryun、Nazer Nazia S.、Ngene Peter、Orimo Shin-ichi、Ravnsbaek Dorthe B.、Yartys Volodymyr A.
-
Journal Title
International Journal of Hydrogen Energy
Volume: 44
Issue: 15
Pages: 7875-7887
DOI
Related Report
Peer Reviewed / Int'l Joint Research
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-