• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of statistical methods employing low-rankness and their basic theory

Research Project

Project/Area Number 17H06569
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeSingle-year Grants
Research Field Statistical science
Research InstitutionThe University of Tokyo

Principal Investigator

Matsuda Takeru  東京大学, 大学院情報理工学系研究科, 特任助教 (50808475)

Project Period (FY) 2017-08-25 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords低ランク / 特異値 / 行列補完 / 縮小ランク回帰 / ベイズ統計 / 損失推定 / 多変量線形回帰 / 特異値縮小型事前分布
Outline of Final Research Achievements

Recently, big data analysis is becoming more and more important in many fields and so we need to develop statistical methods that take advantage of some property of real data. In this study, we developed statistical methods for matrix completion, nonparametric regression, and loss estimation that employ low-rankness in data. Since multivariate data in real world often has low-rankness, the proposed methods lead to more effective data analysis.

Academic Significance and Societal Importance of the Research Achievements

近年、さまざまな分野において膨大なデータを解析する必要が生じており、データのもつ特性を活用した統計手法の開発が必須である。スパース性に着目した統計手法は最近さかんに研究されている一方で、低ランク性を活かした統計手法はまだ十分に研究されているとはいえない。本研究の成果として、低ランク性を活かした行列補完、ノンパラメトリック回帰、損失推定の手法が開発した。現実の多変量データは低ランク性を有することが多いため、これらの手法を用いることで効果的な統計解析が可能となる。

Report

(3 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Annual Research Report
  • Research Products

    (8 results)

All 2019 2018 2017 Other

All Int'l Joint Research (1 results) Journal Article (4 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 4 results,  Open Access: 2 results) Presentation (3 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Int'l Joint Research] Rutgers University(米国)

    • Related Report
      2018 Annual Research Report
  • [Journal Article] Improved loss estimation for a normal mean matrix2019

    • Author(s)
      T. Matsuda and W. E. Strawderman
    • Journal Title

      Journal of Multivariate Analysis

      Volume: 169 Pages: 300-311

    • DOI

      10.1016/j.jmva.2018.10.001

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Empirical Bayes matrix completion2019

    • Author(s)
      T. Matsuda and F. Komaki
    • Journal Title

      Computational Statistics & Data Analysis

      Volume: 137 Pages: 195-210

    • DOI

      10.1016/j.csda.2019.02.006

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Multivariate time series decomposition into oscillation components.2017

    • Author(s)
      Matsuda T, Komaki F:
    • Journal Title

      Neural Computation

      Volume: 29 Issue: 8 Pages: 2055-2075

    • DOI

      10.1162/neco_a_00981

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Minimax estimation of quantum states based on the latent information priors2017

    • Author(s)
      Koyama, T., Matsuda, T. and Komaki, F.
    • Journal Title

      Entropy

      Volume: 19 Issue: 11 Pages: 618-618

    • DOI

      10.3390/e19110618

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Minimax adaptive reduced-rank regression2018

    • Author(s)
      松田 孟留
    • Organizer
      5th IMS Asia Pacific Rim Meeting (ims-APRM 2018)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Information criteria for non-normalized models2018

    • Author(s)
      松田 孟留
    • Organizer
      2018年度統計関連学会連合大会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 経験ベイズ法による行列補完2017

    • Author(s)
      松田 孟留, 駒木 文保
    • Organizer
      2017年度統計関連学会連合大会
    • Related Report
      2017 Annual Research Report

URL: 

Published: 2017-08-25   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi