• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Efficient predictive density for transfer learning under high-dimensional settings

Research Project

Project/Area Number 17H06570
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeSingle-year Grants
Research Field Statistical science
Research InstitutionThe University of Tokyo

Principal Investigator

Yano Keisuke  東京大学, 大学院情報理工学系研究科, 助教 (20806070)

Research Collaborator Andrew Barron  
Kato Kengo  
Komaki Fumiyasu  
Gourab Mukherjee  
Project Period (FY) 2017-08-25 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords予測分布 / 高次元統計 / 擬似ベイズ / 機械学習 / 分布予測 / 転移学習 / 統計数学 / 数理工学
Outline of Final Research Achievements

This research develops A)the strategies of reducing the computational cost of Bayesian methods by quasi-posteriors; B)the efficient predictive densities for sparse count data.
In Research A, theoretical properties of quasi-posteriors (posteriors based on handy or mis-specified likelihoods) such as information losses or performance in uncertainty quantification are studied under high dimensional settings. This research shows a possibility of constructing predictive densities with both low computational costs and high performance by leveraging quasi-posteriors.
In Research B, efficient predictive densities for sparse count data are constructed. This research shows compatibility of high performance and low computational cost in constructing predictive densities under high dimensional settings by focusing on sparsity or quasi-sparsity of data.

Academic Significance and Societal Importance of the Research Achievements

予測とは,現在の観測量をもとに予測したい量(予測量)の振る舞いを推測することで
ある.地震予測,交通予測,遺伝子機能予測等,様々な予測が社会で活用されている.統計的な予測手法には,予測量の平均を推定する点予測と予測量の従う分布を推定する分布予測がある.予測量の従う分布が分かれば,検定や予測区間の構成ができるため,分布予測がより重要である.
転移学習とは,ある領域での観測量を利用して別の領域にある予測量を予測することである.転移学習は統計学と機械学習で近年注目されており,例えば、深層学習の精度向上に利用されている.転移学習の理論的性質が分かると,既存の学習手法の精度は飛躍的に向上するため重要である.

Report

(3 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Annual Research Report
  • Research Products

    (11 results)

All 2018 2017

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (10 results) (of which Int'l Joint Research: 3 results,  Invited: 2 results)

  • [Journal Article] Scoring rules for statistical models on spheres2018

    • Author(s)
      Takasu Y., Yano K., Komaki, F.
    • Journal Title

      Statistics & Probability Letters

      Volume: 138 Pages: 111-115

    • DOI

      10.1016/j.spl.2018.02.054

    • Related Report
      2018 Annual Research Report 2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Non-asymptotic minimax adaptiation and weak admissibility using random sieve priors2018

    • Author(s)
      Keisuke Yano
    • Organizer
      The 5th Institute of Mathematical Statistics Asia Pacific Rim Meeting
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Non-asymptotic Bayesian minimax adaptation in several nonparametric models2018

    • Author(s)
      矢野恵佑
    • Organizer
      企画セッション「New trends in Bayesian perspective」, 2018年度統計関連学会連合大会
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Inequalities for minimax Renyi divergence2018

    • Author(s)
      矢野恵佑
    • Organizer
      2018年度統計関連学会連合大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Divergence for statistical analysis of spherical data2018

    • Author(s)
      矢野恵佑
    • Organizer
      シンポジウム「統計・機械学習の交わりと広がり」
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Non-asymptotic minimax Bayesian nonparametric estimation based on invariance2018

    • Author(s)
      矢野恵佑
    • Organizer
      Current topics on algebraic statistics and related fields
    • Related Report
      2018 Annual Research Report
  • [Presentation] Weak admissibility in high-dimensional and nonparametric statistical models2017

    • Author(s)
      矢野恵佑,駒木文保
    • Organizer
      2017年度統計関連学会連合大会,愛知,2017.
    • Related Report
      2017 Annual Research Report
  • [Presentation] Nonparametric regression for manifold data via embedding distance2017

    • Author(s)
      今泉允章,矢野恵佑
    • Organizer
      2017年度統計関連学会連合大会,愛知,2017.
    • Related Report
      2017 Annual Research Report
  • [Presentation] Finite sample bound for the Bernstein-von Mises theorem,2017

    • Author(s)
      矢野恵佑,加藤賢悟
    • Organizer
      2017年度統計関連学会連合大会,愛知,2017.
    • Related Report
      2017 Annual Research Report
  • [Presentation] 階層化したモデル平均化法を用いたオンライン集団学習2017

    • Author(s)
      岡田誠,矢野恵佑,駒木文保
    • Organizer
      第11回日本統計学会春季集会,東京,2017.
    • Related Report
      2017 Annual Research Report
  • [Presentation] Online Ensemble Learning Using Hierarchical Bayesian Model Averaging2017

    • Author(s)
      Makoto Okada, Keisuke Yano, and Fumiyasu Komaki
    • Organizer
      IFCS-2017, Japan, 2017.
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research

URL: 

Published: 2017-08-25   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi