Fundamental Studies of Excitons and Charge-Carriers in Organic Materials Relevant to Organic Electronics
Project/Area Number |
17H06791
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Single-year Grants |
Research Field |
Organic and hybrid materials
|
Research Institution | Kyoto University |
Principal Investigator |
Park Jaehong 京都大学, 工学研究科, 講師 (00802224)
|
Project Period (FY) |
2017-08-25 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 有機半導体 / 高分子自己組織化 / 光物理学 / Organic semiconductor / Polymer self-assembly / Photophysics / organic semiconductor / photophysics / excited-state / exciton / charge-carrier / polymer / molecular aggregate |
Outline of Final Research Achievements |
In this research program, the researcher aims to elucidate the correlations between crystalline domains that exist in organic semiconductors and their photophysical/photochemical properties. Toward this goal, we developed a novel method to synthesize conjugated polymer particles in solution-phase, which reveal the dominant formation of crystalline domains with the suppressed formation of amorphous domains. These polymer particles exhibit consistent optical properties either in dispersion or thin-film. The researcher, in addition, investigated the correlations between organic semiconductor topology and photophysical properties utilizing chemically identical while topologically distinguished metal-organic frameworks (MOFs). These MOF samples show that the degree of the excited-state localization (localized vs delocalized) can be controlled only by modulating semiconductor topology without changing chemical composition.
|
Academic Significance and Societal Importance of the Research Achievements |
無機太陽電池とは異なり、有機太陽電池では、まだ光エネルギーが電気エネルギーに変換される過程で未知の領域が多く、そのため、有機太陽電池の商業化は、無機太陽電池よりも遅い状況である。本研究課題で開発された高分子結晶相の粒子は、有機太陽電池で光エネルギーを電気エネルギーに変換させる結晶相でのメカニズムを研究を可能にした。また、有機半導体材料で分子の積層による構造の重要性と分子と光との相互作用を調節することができる方法を提示することができた。これは、今後の固相有機半導体材料を設計する基礎知識となる。
|
Report
(3 results)
Research Products
(15 results)