• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

超対称ゲージ理論の可解性における量子代数の役割

Research Project

Project/Area Number 17J02745
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeSingle-year Grants
Section国内
Research Field Particle/Nuclear/Cosmic ray/Astro physics
Research InstitutionThe University of Tokyo

Principal Investigator

福田 真之  東京大学, 理学系研究科, 特別研究員(DC1)

Project Period (FY) 2017-04-26 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥2,800,000 (Direct Cost: ¥2,800,000)
Fiscal Year 2019: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2018: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2017: ¥1,000,000 (Direct Cost: ¥1,000,000)
KeywordsMacdonald多項式 / クイバーゲージ理論 / 非定常Ruijsenaars関数 / 位相的頂点 / 量子トロイダル代数 / D型箙ゲージ理論
Outline of Annual Research Achievements

Koornwinder多項式と呼ばれるBC型のroot系に関連したMacdonald多項式の研究を行った。具体的には、Koornwinde多項式をFock空間上に構成することを目標とした。Koornwinder多項式を定義するKoornwinder作用素をFock空間上で構成することに成功した。しかし、van Diejenによって構成されたKoornwinder系の高次ハミルトニアンをFock空間上で実現することは未だできておらず、今後の課題である。
2つ目の研究として、non-stationary Ruijsenaars関数を物理的に解釈するという目標に取り組んだ。その結果、non-stationary Ruijsenaars関数が、5次元のN=1* Super Yang-Mills理論にゲージ群を完全に破るsurface defectを挿入した際の分配関数に一致することを発見した。この発見をもとに、refined topological vertexを用いたnon-stationary Ruijsenaars関数(の特殊化)の構成を提案し、論文として発表した。言い換えると、5次元のaffine quiverゲージ理論のパラメータを特殊化することにより、non-stationary Ruijsenaars関数が得られるということが理解された。

Research Progress Status

令和元年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

令和元年度が最終年度であるため、記入しない。

Report

(3 results)
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • Research Products

    (12 results)

All 2020 2019 2018 2017

All Journal Article (5 results) (of which Int'l Joint Research: 1 results,  Open Access: 4 results,  Peer Reviewed: 2 results) Presentation (7 results) (of which Int'l Joint Research: 4 results)

  • [Journal Article] Non-stationary Ruijsenaars functions for κ=t^{-1/N} and intertwining operators of Ding-Iohara-Miki algebra2020

    • Author(s)
      Masayuki Fukuda, Yusuke Ohkubo, Jun'ichi Shiraishi
    • Journal Title

      rXiv

      Volume: 2002.00243 Pages: 1-47

    • Related Report
      2019 Annual Research Report
    • Open Access
  • [Journal Article] Generalized Macdonald Functions on Fock Tensor Spaces and Duality Formula for Changing Preferred Direction2019

    • Author(s)
      Masayuki Fukuda, Yusuke Ohkubo, Jun'ichi Shiraishi
    • Journal Title

      arXiv

      Volume: 1903.05905 Pages: 1-54

    • Related Report
      2018 Annual Research Report
  • [Journal Article] Operator product expansion for conformal defects2018

    • Author(s)
      M. Fukuda, N. Kobayashi, T. Nishioka
    • Journal Title

      Journal of High Energy Physics

      Volume: 1801 Issue: 1 Pages: 13-13

    • DOI

      10.1007/jhep01(2018)013

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Maulik-Okounkov's R-matrix from Ding-Iohara-Miki algebra2017

    • Author(s)
      Masayuki Fukuda。Koichi Harada、Yutaka Matsuo、Rui-Dong Zhu
    • Journal Title

      arXiv preptint

      Volume: 1705.02941

    • Related Report
      2017 Annual Research Report
    • Open Access
  • [Journal Article] Reflection states in Ding-Iohara-Miki algebra and brane-web for D-type quiver2017

    • Author(s)
      Jean-Emile Bourgine, Masayuki Fukuda, Yutaka Matsuo, Rui-Dong Zhu
    • Journal Title

      Journal of High Energy Physics

      Volume: 12, 015 Issue: 12 Pages: 1-27

    • DOI

      10.1007/jhep12(2017)015

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Macdonald Functions from Topological Vertex and its Elliptic Analogue2019

    • Author(s)
      Masayuki Fukdua
    • Organizer
      Elliptic integrable systems, special functions and quantum field theory
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Macdonald Functions from Topological Vertex and its Elliptic Analogue2019

    • Author(s)
      Masayuki Fukdua
    • Organizer
      String-Math 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Duality formula for intertwiners of DIM and its application2019

    • Author(s)
      Masayuki Fukdua
    • Organizer
      Topological Field Theories, String theory and Matrix Models - 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Koornwinder作用素のFock空間上での実現2019

    • Author(s)
      福田真之
    • Organizer
      日本数学会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Blow-ups and vertex operator algebras2019

    • Author(s)
      Masayuki Fukuda
    • Organizer
      String-Math 2018
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Reflection Operators in Ding-Iohara-Miki Algebra and its Application to Topological Vertex2017

    • Author(s)
      福田真之
    • Organizer
      日本物理学会
    • Related Report
      2017 Annual Research Report
  • [Presentation] Ding-Iohara-Miki Algebra, Topological Vertex, and D-Type Quiver Gauge Theories2017

    • Author(s)
      福田真之
    • Organizer
      学振日露交流事業国内ワーキングセミナー
    • Related Report
      2017 Annual Research Report

URL: 

Published: 2017-05-25   Modified: 2024-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi