Project/Area Number |
17J02745
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 国内 |
Research Field |
Particle/Nuclear/Cosmic ray/Astro physics
|
Research Institution | The University of Tokyo |
Principal Investigator |
福田 真之 東京大学, 理学系研究科, 特別研究員(DC1)
|
Project Period (FY) |
2017-04-26 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥2,800,000 (Direct Cost: ¥2,800,000)
Fiscal Year 2019: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2018: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2017: ¥1,000,000 (Direct Cost: ¥1,000,000)
|
Keywords | Macdonald多項式 / クイバーゲージ理論 / 非定常Ruijsenaars関数 / 位相的頂点 / 量子トロイダル代数 / D型箙ゲージ理論 |
Outline of Annual Research Achievements |
Koornwinder多項式と呼ばれるBC型のroot系に関連したMacdonald多項式の研究を行った。具体的には、Koornwinde多項式をFock空間上に構成することを目標とした。Koornwinder多項式を定義するKoornwinder作用素をFock空間上で構成することに成功した。しかし、van Diejenによって構成されたKoornwinder系の高次ハミルトニアンをFock空間上で実現することは未だできておらず、今後の課題である。 2つ目の研究として、non-stationary Ruijsenaars関数を物理的に解釈するという目標に取り組んだ。その結果、non-stationary Ruijsenaars関数が、5次元のN=1* Super Yang-Mills理論にゲージ群を完全に破るsurface defectを挿入した際の分配関数に一致することを発見した。この発見をもとに、refined topological vertexを用いたnon-stationary Ruijsenaars関数(の特殊化)の構成を提案し、論文として発表した。言い換えると、5次元のaffine quiverゲージ理論のパラメータを特殊化することにより、non-stationary Ruijsenaars関数が得られるということが理解された。
|
Research Progress Status |
令和元年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
令和元年度が最終年度であるため、記入しない。
|
Report
(3 results)
Research Products
(12 results)