• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

正則なヘッセンバーグ多様体の研究

Research Project

Project/Area Number 17J04330
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeSingle-year Grants
Section国内
Research Field Geometry
Research InstitutionOsaka University

Principal Investigator

堀口 達也  大阪大学, 情報科学研究科, 特別研究員(PD)

Project Period (FY) 2017-04-26 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsヘッセンバーグ多様体 / 旗多様体 / シューベルト多項式
Outline of Annual Research Achievements

ヘッセンバーグ多様体は旗多様体の部分多様体であり,そのトポロジーは他分野の超平面配置やグラフ理論と関連している興味深い研究対象である.今年度は正則な冪零ヘッセンバーグ多様体のコホモロジー環の明示的表示を与える問題を,昨年度に引き続き,榎園誠氏,長岡高広氏,土谷昭善氏と取り組んだ.
この問題は,以前の阿部拓郎氏,枡田幹也氏,村井聡氏,佐藤敬志氏との共同研究により,対応するイデアル配置の対数的導分加群の基底を明示的に構成する問題に帰着されるため,ルート半順序集合のイデアルの取り方に依存しない基底の構成を目標とした.以下では,この基底を一様な基底と呼ぶことにする.
A,B,C,G型に関しては,その一様な基底は阿部拓郎氏,枡田幹也氏,村井聡氏,佐藤敬志氏との共同研究で既に与えられており,昨年度に榎園誠氏,長岡高広氏,土谷昭善氏との共同研究によりD型イデアル配置の対数的導分加群の一様な基底を得た.E,F型に関しても昨年度に取り組んではいたが,完全には解決していなかった.しかし,今年度E,F型に関してもイデアル配置の対数的導分加群の一様な基底が得られた.
より厳密には,正ルートからなる集合のある分解を考え,その分解に応じてヘッセンバーグ関数の定義,イデアル配置の対数的導分加群の一様な基底の概念を導入した.そのような任意の分解に対して,イデアル配置の対数的導分加群の一様な基底が,ルート系の言葉とある正則行列たちを用いた漸化式で表されることを証明した.(この正則行列たちは,Lie typeに依って変わってくる.)さらに,正ルートからなる集合のある分解をLie type毎に一つ固定したとき,その正則行列たちを具体的に与えた.
この結果と昨年度に得られていた別の結果(ともに榎園誠氏,長岡高広氏,土谷昭善氏との共同研究)の二つを論文に纏め,arXivにアップロードした.

Research Progress Status

令和元年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

令和元年度が最終年度であるため、記入しない。

Report

(3 results)
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • Research Products

    (29 results)

All 2020 2019 2018 2017

All Journal Article (6 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 6 results,  Open Access: 1 results) Presentation (23 results) (of which Int'l Joint Research: 13 results,  Invited: 12 results)

  • [Journal Article] A survey of recent developments on Hessenberg varieties2019

    • Author(s)
      Hiraku Abe and Tatsuya Horiguchi
    • Journal Title

      to appear in the Proceedings volume of the conference in Schubert Calculus, Guangzhou, November 2017

      Volume: 印刷中

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] HESSENBERG VARIETIES AND HYPERPLANE ARRANGEMENTS2019

    • Author(s)
      Takuro Abe, Tatsuya Horiguchi, Mikiya Masuda, Satoshi Murai and Takashi Sato
    • Journal Title

      Journal fur die Reine und Angewandte Mathematik

      Volume: 16 Issue: 09 Pages: 1-45

    • DOI

      10.1515/crelle-2018-0039

    • URL

      https://ocu-omu.repo.nii.ac.jp/records/2016849

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] The volume polynomial of regular semisimple Hessenberg varieties and the Gelfand-Zetlin polytope2019

    • Author(s)
      Harada Megumi、Horiguchi Tatsuya、Masuda Mikiya、Park Seonjeong
    • Journal Title

      Proceedings of the Steklov Institute of Mathematics

      Volume: 印刷中

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] The cohomology rings of regular nilpotent Hessenberg varieties and Schubert polynomials2018

    • Author(s)
      Horiguchi Tatsuya
    • Journal Title

      Proceedings of the Japan Academy, Series A, Mathematical Sciences

      Volume: 94 Issue: 9 Pages: 87-92

    • DOI

      10.3792/pjaa.94.87

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] THE COHOMOLOGY RINGS OF REGULAR NILPOTENT HESSENBERG VARIETIES IN LIE TYPE A2018

    • Author(s)
      Hiraku Abe, Megumi Harada, Tatsuya Horiguchi, Mikiya Masuda
    • Journal Title

      International Mathematics Research Notices

      Volume: 16 Issue: 05 Pages: 1-52

    • DOI

      10.1093/imrn/rnx275

    • URL

      https://ocu-omu.repo.nii.ac.jp/records/2016845

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] The cohomology rings of regular semisimple Hessenberg varieties for h=(h(1),n,…,n)2018

    • Author(s)
      Abe Hiraku, Horiguchi Tatsuya, Masuda Mikiya
    • Journal Title

      Journal of Combinatorics

      Volume: 印刷中

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Presentation] The topology and combinatorics of Hessenberg varieties2020

    • Author(s)
      堀口 達也
    • Organizer
      Toric Topology Postdoc Seminar
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] The cohomology rings of regular nilpotent Hessenberg varieties2020

    • Author(s)
      堀口 達也
    • Organizer
      Workshop in Washington University in St. Louis
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] The topology and combinatorics of Hessenberg varieties2020

    • Author(s)
      堀口 達也
    • Organizer
      Geometry and Topology seminar in McMaster University
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 正則な冪零ヘッセンバーグ多様体のコホモロジー環の基底について2019

    • Author(s)
      堀口 達也
    • Organizer
      変換群論とその応用
    • Related Report
      2019 Annual Research Report
  • [Presentation] Topics on Hessenberg varieties2019

    • Author(s)
      堀口 達也
    • Organizer
      Joint conference of Kangwon-Kyungki Mathematical Society and Youngnam Mathematical Society
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] ヘッセンバーグ多様体のトポロジーについて2019

    • Author(s)
      堀口 達也
    • Organizer
      変換群論セミナー
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] The topology of Hessenberg varieties2019

    • Author(s)
      堀口 達也
    • Organizer
      Topology, Geometry, and Dynamics: Rokhlin-100 Program of the conference
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A basis of the cohomology ring of a regular nilpotent Hessenberg variety2019

    • Author(s)
      堀口 達也
    • Organizer
      JAPANESE-RUSSIAN SEMINAR ON TORIC TOPOLOGY AND HOMOTOPY THEORY
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] ヘッセンバーグ多様体のトポロジーと超平面配置2019

    • Author(s)
      堀口 達也
    • Organizer
      第29回大和郡山セミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] A basis of the cohomology ring of a regular nilpotent Hessenberg variety2019

    • Author(s)
      堀口 達也
    • Organizer
      Hyperplane arrangement: recent advances and open problems, CIMPA-IMH research school 2019
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] The cohomology rings of Hessenberg varieties and Schubert polynomials2018

    • Author(s)
      堀口 達也
    • Organizer
      International Seminar on Toric Topology and Homotopy Theory
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 正則な冪零ヘッセンバーグ多様体のコホモロジー環とシューベルト多項式2018

    • Author(s)
      堀口 達也
    • Organizer
      日本数学会2018年度秋季総合分科会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Hessenberg varieties and hyperplane arrangements2018

    • Author(s)
      堀口 達也
    • Organizer
      Topology and Combinatorics seminar at Ajou University
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] The cohomology rings of regular nilpotent Hessenberg varieties and Schubert polynomials2018

    • Author(s)
      堀口 達也
    • Organizer
      Hessenberg Varieties in Combinatorics, Geometry and Representation Theory
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 正則な冪零ヘッセンバーグ多様体のコホモロジー環とシューベルト多項式2018

    • Author(s)
      堀口 達也
    • Organizer
      第45回 変換群論シンポジウム
    • Related Report
      2018 Annual Research Report
  • [Presentation] The problem of a basis of the cohomology ring of a regular nilpotent Hessenberg variety2018

    • Author(s)
      堀口 達也
    • Organizer
      Hessenberg 集会 2018 in Osaka
    • Related Report
      2018 Annual Research Report
  • [Presentation] ヘッセンバーグ多様体と超平面配置2018

    • Author(s)
      堀口 達也
    • Organizer
      日本数学会2018年度年会
    • Related Report
      2017 Annual Research Report
  • [Presentation] The cohomology rings of regular semisimple Hessenberg varieties2017

    • Author(s)
      堀口 達也
    • Organizer
      RIMS研究集会「変換群を核とする代数的位相幾何学」
    • Related Report
      2017 Annual Research Report
  • [Presentation] Hessenberg varieties and hyperplane arrangements2017

    • Author(s)
      堀口 達也
    • Organizer
      Young Researchers in Homotopy Theory and Toric Topology 2017
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] ヘッセンバーグ多様体と超平面配置2017

    • Author(s)
      堀口 達也
    • Organizer
      第64回 トポロジーシンポジウム
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] ヘッセンバーグ多様体と超平面配置2017

    • Author(s)
      堀口 達也
    • Organizer
      RIMS研究集会「表現論と組合せ論」
    • Related Report
      2017 Annual Research Report
  • [Presentation] Hessenberg varieties and hyperplane arrangements2017

    • Author(s)
      堀口 達也
    • Organizer
      International Festival in Schubert Calculus
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Hessenberg varieties II2017

    • Author(s)
      堀口 達也
    • Organizer
      Toric Topology 2017 in Osaka
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research

URL: 

Published: 2017-05-25   Modified: 2024-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi