• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

多様体の幾何構造とその上のシュレディンガー方程式の関係

Research Project

Project/Area Number 17J04478
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeSingle-year Grants
Section国内
Research Field Mathematical analysis
Research InstitutionThe University of Tokyo

Principal Investigator

平良 晃一  東京大学, 数理科学研究科, 特別研究員(DC1)

Project Period (FY) 2017-04-26 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥2,500,000 (Direct Cost: ¥2,500,000)
Fiscal Year 2019: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2018: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2017: ¥900,000 (Direct Cost: ¥900,000)
Keywordsシュレディンガー方程式 / 散乱理論 / 自己共役性 / スペクトル理論 / 超局所解析 / 非楕円型
Outline of Annual Research Achievements

今年度得られた研究結果は以下の通りである.

(1)中村周教授との議論により得られたユークリッド空間上における非楕円型微分作用素の本質的自己共役性に関する結果を論文にまとめて投稿した.また,非楕円型微分作用素の重み付きレゾルベントの有界性とスペクトルの絶対連続性を得た.(2)長距離型シュレディンガー作用素に対する磯崎-北田型修正作用素の簡単な構成法を得た.以前の論文('20 Math. Nachr.)では非楕円型作用素に対して,シンボルに関するある付加的な仮定のもとで磯崎-北田型修正作用素を構成していた.今回の構成法により,その付加的な仮定を外すことに成功した.(3)昨年度に考察していた反発型シュレディンガー作用素について,1次元の場合に,その自己共役拡大のスペクトルが離散的_になることを示した.また,多次元の場合にも極小定義域がL^2にコンパクトに埋め込めることが証明できた.(4)ディラック作用素及び分数階ラプラシアンについて,L^p型のポテンシャルを加えたシュレディンガー作用素を考察した.これらの作用素について,波動作用素の存在及び固有値が離散的であることを証明した.
(5)野村祐司教授と研究討議を行い,離散シュレディンガー作用素の閾値共鳴状態について研究を行った.スペクトルの端点における閾値共鳴状態は連続シュレディンガー作用素の閾値共鳴状態と似た性質を持つこと,及びスペクトルの内部における閾値共鳴状態の非存在を証明した.(6)3次元の離散シュレディンガー作用素について,$l^p$型のレゾルベント評価が連続シュレディンガーの場合と同様の指数に対して成り立つことを示した.

Research Progress Status

令和元年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

令和元年度が最終年度であるため、記入しない。

Report

(3 results)
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • Research Products

    (20 results)

All 2020 2019 2018 2017 Other

All Int'l Joint Research (1 results) Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (16 results) (of which Int'l Joint Research: 6 results,  Invited: 5 results)

  • [Int'l Joint Research] University of North Carolina(米国)

    • Related Report
      2017 Annual Research Report
  • [Journal Article] Strichartz estimates for non‐degenerate Schrodinger equations2020

    • Author(s)
      Kouchi Taira
    • Journal Title

      Mathematische Nachrichten

      Volume: 293 Issue: 4 Pages: 774-793

    • DOI

      10.1002/mana.201800148

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Some properties of threshold eigenstates and resonant states of discrete Schrodinger operators2020

    • Author(s)
      Yuji Nomura, Kouichi Taira
    • Journal Title

      Annales Henri Poincare

      Volume: 21 Issue: 6 Pages: 2009-2030

    • DOI

      10.1007/s00023-020-00912-6

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Uniform bounds of discrete Birman-Schwinger operators2019

    • Author(s)
      Yukihide Tadano, Kouichi Taira
    • Journal Title

      Transactions of the American Mathematical Society

      Volume: 372 Issue: 7 Pages: 5243-5262

    • DOI

      10.1090/tran/7882

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Presentation] Limiting absorption principle on L^p-spaces2019

    • Author(s)
      平良晃一
    • Organizer
      2019 夏の作用素論シンポジウム
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Spectral theory for repulsive Schrodinger operators and an application to limit circle problem2019

    • Author(s)
      平良晃一
    • Organizer
      日本数学会 2019 年度秋季総合分科会
    • Related Report
      2019 Annual Research Report
  • [Presentation] From scattering theory to essential self-adjointness2019

    • Author(s)
      Kouichi Taira
    • Organizer
      Analysis sem- inar
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Essential self-adjointness of real principal type operators on Euclidean spaces2019

    • Author(s)
      Kouichi Taira
    • Organizer
      Spectral problems in mathematical physics
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Scattering theory for repulsive Schrodinger operators and applications to limit circle problem2019

    • Author(s)
      Kouichi Taira
    • Organizer
      Spectral and Scattering Theory and Related Topics
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Limiting absorption principle for discrete Schrodinger operators2019

    • Author(s)
      平良晃一
    • Organizer
      作 用素論セミナー
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Essential self-adjointness of the real principal type operators2019

    • Author(s)
      平良 晃一
    • Organizer
      スペクトル・散乱京都今出川シンポジウム
    • Related Report
      2018 Annual Research Report
  • [Presentation] Microlocal approach to stationary scattering theory and applications2019

    • Author(s)
      平良 晃一
    • Organizer
      ス ペクトル・散乱若手勉強会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Uniform bounds for discrete Schroedinger operators2019

    • Author(s)
      平良 晃一
    • Organizer
      日本数学会 2019 年度春季総合分科会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Essential self-adjointness of pseudodifferential operators2018

    • Author(s)
      Kouchi Taira
    • Organizer
      Summer School ”Spectral theory of Schroedinger operators ”
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Essential self-adjointness of pseudodifferential operators on Euclidean spaces2018

    • Author(s)
      平良 晃一
    • Organizer
      日本数学会 2018 年度秋季総合分科会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Weakly coupled systems for discrete Schroedinger operators2018

    • Author(s)
      平良 晃一
    • Organizer
      第 28 回数理物理と微分方程式
    • Related Report
      2018 Annual Research Report
  • [Presentation] Strichartz estimates for semi-Riemannian Schroedinger equations2017

    • Author(s)
      平良晃一
    • Organizer
      第 158 回学習院大学スペクトル理論セミナー
    • Related Report
      2017 Annual Research Report
  • [Presentation] Strichartz estimates for Lorentzian Schroedinger Equations2017

    • Author(s)
      Kouichi Taira
    • Organizer
      Geometric Analysis on Noncompact Manifolds
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] ”Strichartz estimates for non-degenerate Schroedinger equations”2017

    • Author(s)
      Kouichi Taira
    • Organizer
      Workshop ”Spectral and Scattering Theory and Related Topics
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Strichartz estimates for non-degenerate Schroedinger equations2017

    • Author(s)
      平良晃一
    • Organizer
      第 14 回数学総合若手研究集会 ~数学の交叉点~
    • Related Report
      2017 Annual Research Report

URL: 

Published: 2017-05-25   Modified: 2024-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi