Project/Area Number |
17K00054
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Statistical science
|
Research Institution | Shiga University (2019-2020) Kagoshima University (2017-2018) |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 生存分析 / 事象時間データ / 回帰分析 / 多変量分布 / 数理統計 / 多変量解析 / 層別分析 / 競合リスク問題 / 群逐次デザイン / セミパラメトリック解析 / ノンパラメトリック解析 / 繰り返し測定解析 / 樹木構造接近法 / マルチンゲール接近法 / コピュラモデル / ログランク統計量 / ノンパラメトリック法 / 統計推測 / データサイエンス / 統計数学 / 臨床統計 |
Outline of Final Research Achievements |
We formulated the asymptotic distribution of correlated bivariate log-rank statistics and applied it to inference for bivariate event-time data with copula-type correlation. Some results were obtained in the studies of inference for the semi-competitive risk problem, and application of group-sequential bivariate log-rank statistics to sample size design. We also studied a semi-parametric estimation method using survival regression trees for relative survival, and proposed a Brier score for relative survival models to measure the predictive performance of regression trees, which was presented at a conference. We studied semi-parametric estimation of bivariate hazard models in which event-time and calendar-time are represented separately, and examined computational methods for the semi-parametric estimation.
|
Academic Significance and Societal Importance of the Research Achievements |
医療の世界では,がんや循環器疾患などで治療効果を測るために,事象時間データの分析は必須である.経済分野では倒産などのイベントを分析したり,製造業分野では在庫がなくなるまでの時間を分析したり,事象時間データの分析の適用例は多くみられる.そのようなデータの分析方法について,Cox回帰モデルなどの生存時間データの統計解析法は必須であり,その当該分野において,現在まで得られている統計的な分析方法,理論,計算手法を発展させるための研究を行い,一定の成果を得ることができたことは,学術的意義をもつ.さらに,これらの手法を実際のデータに応用していくことで,社会的に還元をなすことができる.
|