• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of a framework for adaptive mesh refinement on GPU supercomputers using a novel dynamic load balancing.

Research Project

Project/Area Number 17K00165
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field High performance computing
Research InstitutionThe University of Tokyo

Principal Investigator

Shimokawabe Takashi  東京大学, 情報基盤センター, 准教授 (40636049)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords適合細分化格子 / 動的負荷分散 / 高生産フレームワーク / 高性能計算 / スーパーコンピュータ / GPU / 適合細分化格子法 / ステンシル計算 / 時間ブロッキング法 / ハイパフォーマンス・コンピューティング / アルゴリズム / フレームワーク / 計算科学 / 大規模計算
Outline of Final Research Achievements

Recently grid-based physical simulations with multiple GPUs require effective methods to adapt grid resolution to certain sensitive regions of simulations. In this research, we have developed a high-productivity framework for adaptive mesh refinement (AMR); the AMR method is one of the effective methods on GPU to compute certain local regions that demand higher accuracy with higher resolution. This framework allows us to apply AMR to various stencil-based applications on GPU supercomputers. We have developed and implemented a dynamic load balancing method for GPU supercomputers, communication reduction techniques, and optimization techniques for time integration computations to enhance the framework. The 3D compressive fluid simulation based on this proposed framework has achieved a high parallel efficiency and demonstrated the high productivity of the framework.

Academic Significance and Societal Importance of the Research Achievements

ペタスケールのスパコンでは、低消費電力かつ高性能を達成するため数千台を超えるGPUが搭載され、日本、 米国などで稼働している。格子計算はスパコンを利用する代表的なアプリケーションで、局所的に高精細な大規模計算を実現させる意義は大きい。 大規模な格子計算に向けて、通信やデータ移動の少ないアルゴリズムの開発は必須であり、スパコンに必須な通信隠蔽・削減技術と併用して、高性能AMR法を達成する試みの意義は大きい。本研究は、個別アプリケーションに特化したAMR法を構築するものでなく、汎用フレームワークを構築するものであり、大規模GPUアプリケーションの開発を支援する基盤技術となり、波及範囲は広い。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (15 results)

All 2020 2019 2018 2017

All Journal Article (4 results) (of which Peer Reviewed: 4 results) Presentation (11 results) (of which Int'l Joint Research: 6 results)

  • [Journal Article] A High-Productivity Framework for Adaptive Mesh Refinement on Multiple GPUs2019

    • Author(s)
      Shimokawabe Takashi、Onodera Naoyuki
    • Journal Title

      International Conference on Computational Science (ICCS) 2019

      Volume: 11536 Pages: 281-294

    • DOI

      10.1007/978-3-030-22734-0_21

    • ISBN
      9783030227333, 9783030227340
    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A High-productivity Framework for Adap- tive Mesh Refinement on Multiple GPUs2019

    • Author(s)
      Takashi Shimokawabe and Naoyuki Onodera
    • Journal Title

      International Conference on Computational Science 2019

      Volume: -

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Communication Reduced Multi-time-step Algorithm for Real-time Wind Simulation on GPU-based Supercomputers2018

    • Author(s)
      Naoyuki Onodera, Yasuhiro Idomura, Yussuf Ali and T. Shimokawabe
    • Journal Title

      the 9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA)

      Volume: - Pages: 1-8

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] A Stencil Framework to Realize Large-scale Computations Beyond Device Memory Capacity on GPU Supercomputers2017

    • Author(s)
      Takashi Shimokawabe, Toshio Endo, Naoyuki Onodera and Takayuki Aoki
    • Journal Title

      2017 IEEE International Conference on Cluster Computing (CLUSTER)

      Volume: 2017 Pages: 525-529

    • DOI

      10.1109/cluster.2017.97

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] AMR Framework to Realize Effective High-resolution Simulations on Multiple GPUs2020

    • Author(s)
      Takashi Shimokawabe and Naoyuki Onodera
    • Organizer
      International Conference on High Performance Computing in Asia-Pacific Region (HPCAsia) 2020
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] AMR Framework for Large-Scale Simulations on Multiple GPUs2020

    • Author(s)
      Takashi Shimokawabe and Naoyuki Onodera
    • Organizer
      SIAM Conference on Parallel Processing for Scientific Computing 2020
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] AMR 法フレームワークの大規模 GPU 計算に向けた発展2019

    • Author(s)
      下川辺 隆史、小野寺 直幸
    • Organizer
      第 24 回 計算工学講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 局所細分化格子ボルツマン法を 用いたオクラホマシティにおけるトレーサー拡散解析2019

    • Author(s)
      小野寺 直幸、井戸村 泰宏、 河村 拓馬、中山 浩成、下川辺 隆史
    • Organizer
      第 24 回計算工学講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Communication reduced multi-time-step algorithm for the AMR-based lattice Boltzmann method on GPU-rich supercomputers2019

    • Author(s)
      Naoyuki Onodera, Yasuhiro Idomura, Yussuf Ali, Takashi Shimokawabe
    • Organizer
      Communication reduced multi-time-step algorithm for the AMR-based lattice Boltzmann method on GPU-rich supercomputers
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] AMR Framework with multiple GPUs to Realize Effective High- Resolution Simulations2019

    • Author(s)
      Takashi Shimokawabe
    • Organizer
      GPU Technology Conference (GTC) 2019
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 複数GPUを用いた高精細計算を実現するAMR法フレームワークの開発2018

    • Author(s)
      下川辺 隆史, 小野寺 直幸
    • Organizer
      第23回計算工学講演会
    • Related Report
      2018 Research-status Report
  • [Presentation] 適合細分化格子ボルツマン法による熱対流解析2018

    • Author(s)
      小野寺 直幸, 井戸村 泰宏, アリ ユスフ, 下川辺 隆史
    • Organizer
      第32回数値流体力学シンポジウム
    • Related Report
      2018 Research-status Report
  • [Presentation] An AMR Framework for Realizing Effective High-Resolution Simulations on Multiple GPUs2018

    • Author(s)
      Takashi Shimokawabe, Takayuki Aoki, and Naoyuki Onodera
    • Organizer
      18th SIAM Conference on Parallel Processing for Scientific Computing
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] AMR Framework for Realizing Effective High-Resolution Simulations on GPU2018

    • Author(s)
      Takashi Shimokawabe, Takayuki Aoki and Naoyuki Onodera
    • Organizer
      GPU Technology Conference 2018
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 高精細計算を実現するAMR法フレームワークの開発2017

    • Author(s)
      下川辺 隆史, 青木 尊之, 小野寺 直幸
    • Organizer
      第22回計算工学講演会
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi