Project/Area Number |
17K00285
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Human interface and interaction
|
Research Institution | Tokyo Polytechnic University |
Principal Investigator |
Sone Junji 東京工芸大学, 工学部, 教授 (50329215)
|
Project Period (FY) |
2017-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | ヒューマンインターフェイス / メタバース / バーチャルリアリティ / インタラクション / MEMS / 触覚 / 力覚 / ソフトアクチュエータ / ヒューマンインタフェース |
Outline of Final Research Achievements |
This research is the expansion of the encounter-type multi-finger haptic mechanism, the development of tactile devices, and the fusion of these devices. The encounter-type multi-finger haptic mechanism developed a function controlled by Unity. In order to realize the encounter type of haptic presentation was realized the force present position change mechanism mounted on each finger by developing multiple resolution expression and motor control function on Unity. The multi-point tactile realized the high density activate points in thin charge type piezoelectric devices, a thickness of 0.25 mm and tactile generation points at intervals of 3.5 mm, and was able to present vibrations of 70-300 Hz. We also proceeded with the multiple cantilever type, but due to many restrictions, it was difficult to make a prototype, so we applied for a patent. Although we can not execute the field experiment for confirming our device, the tactile device and encounter-type haptic system could be developed.
|
Academic Significance and Societal Importance of the Research Achievements |
世界的にメタバース関係の技術の研究が進められている中、この研究は、人間同士や人間とロボットが、力覚と触覚を活用して高密度のコミュニケーションするために活用できる、デバイス及びシステム技術である。今回の開発により、実装が容易で、安価な薄型チャージ型圧電の触覚デバイスを、多点化して開発できたため、メタバースの進展に大きく貢献できると考えられる。今後、デバイスの実用化が望まれるため、高信頼配線や駆動アンプ、それらを統合して制御するシステムの開発を進めることが必要となる。
|